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ABSTRACT
Crude oil prices are of vital importance for market participants and govern-
ments to make energy policies and decisions. In this paper, we apply a
newly proposed autoregressive conditional interval (ACI) model to forecast
crude oil prices. Compared with the existing point-based forecasting mod-
els, the interval-based ACI model can capture the dynamics of oil prices in
both level and range of variation in a unified framework. Rich information
contained in interval-valued observations can be simultaneously utilized,
thus enhancing parameter estimation efficiency and model forecasting
accuracy. In forecasting the monthly West Texas Intermediate (WTI) crude
oil prices, we document that the ACI models outperform the popular
point-based time series models. In particular, ACI models deliver better
forecasts than univariate ARMA models and the vector error correction
model (VECM). The gain of ACI models is found in out-of-sample monthly
price interval forecasts as well as forecasts for point-valued highs, lows,
and ranges. Compared with GARCH and conditional autoregressive range
(CARR) models, ACI models are also superior in volatility (conditional vari-
ance) forecasts of oil prices. A trading strategy that makes use of the
monthly high and low forecasts is further developed. This trading strategy
generally yields more profitable trading returns under the ACI models than
the point-based VECM.
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1. Introduction

Crude oil prices are playing a significant role in the world economy. It attracts a large amount of
attention from policymakers and researchers. The supply and demand for crude oil are inelastic.
Therefore, crude oil prices often experience sharp and sustained fluctuations. More and more
studies have found a causal link from higher crude oil prices to economic recessions, higher
unemployment, inflation, and depressed consumer expenditure; see Hamilton (1983), Bernanke
et al. (1997), Kilian (2009), Hamilton (2011), and Baumeister et al. (2017). In addition, stock mar-
kets are affected by crude oil prices through changes in real cash flows and expected returns.
Crude oil returns and volatility have become strong predictors of those in stock markets, e.g.,
Chiang et al. (2015), Feng et al. (2017), and Christoffersen and Pan (2018).

A large number of econometric models have been applied to characterize the dynamics of lev-
els and volatilities of crude oil prices; see e.g., Sadorsky (2006), Hou and Suardi (2012), and
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Efimova and Serletis (2014). Close-to-close price data are widely used, where a point-valued price
observation is obtained for each time period. In fact, other information is available. For example,
the highest and lowest prices during a certain period contain useful information about the level
of prices. The price range is the difference between the high and low prices, and gives the width
of the band within which the price fluctuates. There has been no evidence showing that point-val-
ued closing prices contain more information on the price dynamics than the other ones.

It has been known for a long time in financial econometrics that range is a much more inform-
ative volatility proxy than a single point-valued closing price, see for instance Parkinson (1980), Chou
(2005), Brownlees and Gallo (2010), Li (2016), and Liu et al. (2017). The price range plays a unique
role in technical analysis. It is related to the technical indictor candlestick and stochastic oscillator.
However, the focus on range alone cannot allow the recovery of the corresponding highs and lows as
argued in He et al. (2010). Some trading strategies are proposed for stock and crude oil prices by
modeling the joint dynamics of highs, lows and ranges to improve common technical analysis, e.g.,
Cheung et al. (2010), He et al. (2010), and Caporin et al. (2013). Thus, it is of interest to model both
the range and its two components (i.e., the high and the low) simultaneously.

In practice, a sequence of oil prices is usually available at various time points (e.g., days) of a given
time period (e.g., a month). We can thus collect the highest and lowest prices within the given time
period, constructing an interval-valued time series (ITS). An interval can be characterized by two pairs
of attributes: the lower (low) and upper (high) bounds, or equivalently the midpoint and range.
Compared with a point-valued closing price data set, an interval data set is capable of assessing the
variation as well as level information within the same time period. Rich information contained in an
interval could be utilized to develop more efficient statistical inference and forecasting than a point-
valued data (Han et al., 2016; Qiao et al., 2019, 2021; Sun et al., 2018, 2019, 2020a, 2020b).

Many studies in the literature have considered forecasting interval variables when both the
explanatory and dependent variables are interval-valued. Univariate and bivariate methods were
proposed. For a pair of attributes of interval variables (e.g., midpoint and range), modeling an
interval data can be accomplished by modeling the two point-valued attributes separately with
univariate models, such as exponential smoothing (Arroyo et al., 2007; Maia and de Carvalho,
2011), and univariate ARMA-X models (Brito, 2007; He and Hu, 2009; Maia et al., 2008). These
univariate models utilize one attribute point-valued information of an interval data in estimating
model parameters, and are not expected to be fully efficient.

To account for possible interdependence between a pair of attributes of an interval-valued
time series, bivariate modeling and estimation are considered in Cheung et al. (2009), He et al.
(2010), Garc�ıa-Ascanio and Mat�e (2010), Arroyo et al. (2011), Gonz�alez-Rivera and Lin (2013),
Teles and Brito (2015), and Golan and Ullah (2017). In particular, a cointegrating relationship
between highs and lows is often found, and thereby vector error correction (VEC) models of
highs and lows, which are the representative of bivariate modeling in the literature, are often
employed. Unlike the univariate modeling approach, VEC models can use both the high and low
price information jointly to estimate model parameters. However, traditional regression models
cannot guarantee that the predicted lower bound is always smaller than its upper bound. At the
same time, VEC models tend to suffer from the problem of overparameterization since they allow
different parameters in the two equations for a given pair of attributes of an interval.

In this paper, we apply two parsimonious autoregressive conditional interval (ACI) models to
forecast monthly crude oil prices. ACI models are first proposed in Han et al. (2012) for interval-
valued time series data, who also develop a minimum DK-distance estimation method. Compared
with the existing methods, ACI models and the minimum DK-distance estimation method have
several advantages. First, an ACI model captures the dynamics of an interval-valued oil price and
its relationship with other interval-valued economic variables in a parsimonious interval frame-
work. In particular, an ACI model is more parsimonious than a VEC model, and thereby the
overparameterization problem can be alleviated. More accurate forecast is thus expected. Second,
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the minimum DK-distance estimation method can simultaneously and efficiently utilize the mid-
point, range and their correlation information to estimate model parameters, by assigning differ-
ent weights on these point attributes using a kernel function, thereby enhancing model parameter
efficiency. A two-stage estimation procedure is expected to produce the asymptotically most effi-
cient estimator for ACI models among the class of minimum DK-distance estimators. Finally, the
ACI methodology can also serve as a unified framework to derive different popular point-based
models of its point attributes as special cases.

Based on a series of monthly interval data over a 25-year period, we estimate two ACI models of
WTI crude oil futures returns, and evaluate their out-of-sample forecasting performances with some
existing popular models. Compared with Han et al. (2012), an interval-valued error correction term is
first added to an ACI model, which is more parsimonious than a point-based VEC model since the
former considers an interval observation as a set rather than modeling the point-valued boundaries of
an interval separately. In addition, in interval-valued crude oil price forecasting, it is shown that the
month-to-month changes in the midpoints at times t� 1 and t are negatively correlated while the
month-to-month changes in the range data are positively correlated. To accommodate this important
empirical stylized fact, we propose a simple interval-valued data transformation.

We have the following important empirical findings:

1. The ACI models deliver better out-of-sample forecasts of monthly price intervals as well as
forecasts for point-valued highs, lows, and ranges than the existing point-based time series
models, including one attribute-based ARMAX models, separate time series models of two
attributes, and than VEC models.

2. The ACI models are also superior in out-of-sample volatility forecasts than the threshold
GARCH and range-based CARR models; the latter is a conditional autoregressive range
model proposed by Chou (2005).

3. The interval-valued speculation has predictive power for oil prices and volatility in ACIX
models, while this predictive ability disappears in other point-based competing methods. This
highlights the gain of utilizing the valuable information contained in interval-valued data
even when the interest is in range or level modeling.

4. A trading strategy that makes use of the monthly highs and lows based on ACI forecasts gen-
erally yields more profitable trading returns than the point-based VEC forecasts.

This paper is organized as follows. Section 2 describes the data and presents some basic ana-
lysis. Section 3 introduces two modified ACI models, and briefly describes the minimum DK-dis-
tance estimation method. Section 4 introduces other competing point-based time series models in
forecasting conditional mean and conditional variance of crude oil prices. Empirical results of
forecasting comparison and trading strategy performance of ACI and point-valued time series
models are presented in Section 5. Section 6 concludes.

2. Data description and preliminary analysis

The data we will analyze in this paper are monthly interval-valued West Texas Intermediate
(WTI) crude oil futures prices Ft of nearby month contracts, constructed by observed daily clos-
ing prices sourced from Energy Information Administration.1 For each month t, the lower and
upper bounds of an interval-valued oil price observation Ft are formed using the minimum and
maximum daily oil futures prices within this month. Spanning from January 1993 to March 2018,

1We use futures prices rather than spot prices. There are mainly two reasons. First, the futures market is a forum to
disseminate crude oil information. It delivers market price signals that are essential for risk monitoring. Second, the WTI
futures on NYMEX is one of the most actively traded contracts all over the world.
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the daily price data are expressed in log scale. Throughout this paper, bold letters denote inter-
val-valued variables, while regular letters denote point-valued variables.

Figure 1 presents the plots of series of monthly logarithmic high (Ht), logarithmic low (Lt) and
monthly range (Rt), where Ht and Lt form the interval-valued series of oil price Ft ¼ ½Lt ,Ht�, and
Rt ¼ Ht � Lt: The bounds Ht and Lt measure the trend of oil prices, while the range Rt quantifies
the fluctuation of oil prices. Figure 1 shows that the price fluctuations are dramatic in the crude
oil market, and in particular, ranges tend to spike upward while the oil prices fall down, indicat-
ing a negative correlation between the trend and volatility contained in the interval oil price data.
Furthermore, it is shown that the interval-valued oil prices in different time periods may have the
same range but distinct price levels, while the similar price levels occurring in different periods
may be accompanied with totally different ranges, suggesting that the interval-valued observations
contain additional important information to the point-valued observations.

A summary of statistical characteristics of the midpoint (Mt ¼ ðLt þHtÞ=2), range (Rt), the
first difference (DHt) of Ht, the first difference (DLt) of Lt and the first difference (DFAt) of loga-
rithmic monthly average futures price is provided in Table 1.2 We observe that the intra-month
oil price fluctuation measured by the sample mean (0.1233) of monthly ranges is about 31 times
higher than the month-to-month change in highs (or lows) measured by the sample mean
(0.0039) of DHt (or DLt), and is 30 times higher than the month-to-month change in monthly
average price level measured by the sample mean (0.0040) of DFAt: On the other hand, the dis-
persion of ranges is a little smaller than the changes in highs, lows and average prices,
respectively.

Augmented Dickey–Fuller test results find that Ht and Lt are nonstationary in levels but sta-
tionary in first differences.3 Previous studies find a cointegrating relationship between Ht and Lt,
e.g., in He et al. (2010) and Cheung et al. (2009). If a cointegrating relationship exists between Ht

and Lt, which will be tested in this paper, we could use the VEC model as a benchmark.
Meanwhile, an error correction term could be added to the ACI model to capture the short-term
dynamics of crude oil returns. Table 2 presents the results of Johansen’s trace and maximal eigen-
value tests. Cointegration of rank 1 is indeed present between Ht and Lt, implying that the lagged
error correction term ECt�1 contains valuable information for future movement of crude
oil prices.

Figure 1. The monthly interval-valued WTI crude oil futures prices. Note: Monthly data for all series span from January 1993 to
March 2018. High, Low and Range in Figure represent the logarithmic high price process (Ht), the logarithmic low price process
(Lt) and the range process (Ht � Lt), respectively. The left axle is for High and Low, and the right axle is for Range.

2Monthly average futures price is the average daily futures prices over the trading days within each month.
3The results are not reported here for space but are available upon request.
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In order to forecast future crude oil prices, we include an explanatory variable called specula-
tion SPEt , which is formed by using weekly data of long positions held by non-commercials of
crude oil in the futures market of NYMEX. The long positions of non-commercials is used in De
Roon et al. (2000) to measure the hedging pressure, which the futures risk premia depend on.
The point-valued speculation, either at monthly or weekly level, has been shown to be significant
in explaining the dynamics of crude oil prices in Wang (2003), Sanders et al. (2004), and Merino
and Ortiz (2005). It is thus expected that interval-valued speculation is also useful for forecasting
oil price intervals, as confirmed in our empirical results below. The data are sourced from U.S.
Commodity Futures Trading Commission (CFTC). Minimum and maximum weekly positions
form a monthly interval-valued speculation observation in a given month. A number of other
variables, like surplus production capacity and OECD petroleum inventory, may be also helpful
to forecast oil prices, but we do not consider them in this paper.

3. ACI models of crude oil prices

3.1. Model specification

First proposed in Han et al. (2012), the autoregressive conditional interval models with orders (p,
q) (ACI(p, q) thereof) is an interval version of ARMA models to capture the conditional mean
dynamics of a univariate ITS. The class of ACI models has been further extended to model an
interval-valued vector process in Han et al. (2016), and to examine the possible nonlinear features
of a univariate interval process in Sun et al. (2018). Given that Section 2 shows that the error cor-
rection term ECt�1 is useful to explain dynamic movements of both highs and lows, we propose
an ACI(2, 2) model of the differenced interval-valued crude oil prices Ft ¼ ½Lt ,Ht� that includes
interval-valued variable ECt

4:

DFt ¼ a0 þ b0I0 þ c1ECt�1 þ
X2
j¼1

bjDFt�j þ
X2
j¼1

hjDut�j þ ut , (3.1)

Table 1. Some basic statistics.

Mt Rt DLt DHt DFAt
Mean 3.7102 0.1233 0.0039 0.0039 0.0040
Std. 0.6480 0.0637 0.0934 0.0811 0.0821
Minimum 2.4441 0.0335 �0.3819 �0.3585 �0.3121
Maximum 4.8922 0.4515 0.2719 0.2814 0.2149

Note: Monthly data for all series span from January 1993 to March 2018. Mt,Rt,Lt,Ht are the midpoint, the range, the highest,
and the lowest of crude oil log futures prices within a month, respectively. FAt is the natural logarithm of the monthly aver-
age crude oil futures price. Std. is the monthly standard deviation.

Table 2. Cointegration test results.

Hypothesis EIGEN TRACE Ht Lt Lag

r ¼ 0 33.26��� 35.76��� 1
r � 1 2.51 2.51 1
Cointegration parameters 1 0.8897

Note: The maximal eigenvalue and trace statistics are presented in the columns denoted by ‘EIGEN’ and ‘TRACE’ respectively.
‘Lag’ is the lag length in the VECM. There is no deterministic trend in the data. Asterisks ���, �� , and � indicate significance
at the 1%, 5% and 10% significance levels respectively.

4To determine the lag orders in an ACI model for oil prices, we can refer to the implied point-valued equation (3.8). An
ARMA(2,2) is adequate for both midpoint and range. Similarly, second-lagged values of the differenced speculation variable
are significant to predict the crude oil midpoint.
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and with the inclusion of the exogenous interval-valued speculation variable SPEt :

DFt ¼ a0 þ b0I0 þ c1ECt�1 þ
X2
j¼1

bjDFt�j þ
X2
j¼1

hjDut�j þ c2DSPEt�2 þ ut , (3.2)

where Ft ,ECt�1, and SPEt are interval-valued processes; D denotes the Hukuhara difference of
an interval-valued process, e.g.,

DFt ¼ Lt � Lt�1,Ht �Ht�1½ � ¼ DLt ,DHt½ �, (3.3)

which is a stationary interval-valued process though Ft is not; a0, bj ðj ¼ 0, 1, 2Þ, cj and hj (j¼ 1,

2) are scalar-valued unknown parameters, and I0 ¼ ½� 1
2 ,

1
2� is a constant unit interval; ut ¼

½uL, t , uH, t� is an interval martingale difference sequence with respect to the information set It�1 at
time t� 1 such that EðutjIt�1Þ ¼ ½0, 0�; a0 þ b0I0 ¼ ½a0 � 1

2 b0, a0 þ 1
2b0� is an interval intercept;

ECt�1 ¼ ½12 ECt�1, 32 ECt�1�5 is the lagged interval-valued error correction term, where ECt�1 is the
lagged error correction term induced from the long-run equation between Ht and Lt; SPEt is the
interval-valued speculation introduced in Section 2.

A few remarks need to be made here. First of all, an ACI model serves direct interest to fore-
cast crude oil price/return intervals during a given time period, based on the past history of crude
oil price interval data. In particular, each interval observation in our model is an inseparable set
of ordered numbers that includes not only the naturally ordered intervals (i.e., the left bound
does not exceed the right bound), but also the reversely ordered intervals (i.e., the left bound
exceeds the right bound); see details in Han et al. (2012, 2016) and Sun et al. (2018). This exten-
sion is suitable in modeling interval-valued crude oil process, because one could follow the popu-
lar log-difference transformation of a price interval time series to obtain an interval version of
stationary log return interval process as in (3.3), where return intervals DFt ¼ ½DLt ,DHt� with
reverse order are frequently observed.

Next, in addition to forecast intervals, an ACI model is also useful in forecasting range-based
volatility of crude oil prices. By taking the difference between interval boundaries in model (3.2),
it yields an ARMAX type range model, namely:

DRt ¼ b0 þ c1ECt�1 þ
X2
j¼1

bjDRt�j þ
X2
j¼1

hjuR, t�j þ c2RDSPE, t�2 þ uR, t , (3.4)

where Rt and RDSPE, t�2 are the ranges of the original interval processes respectively; uR, t is the
range of ut satisfies EðuR, tjIt�1Þ ¼ 0: The model (3.4) can be used to forecast the range of a time
series, where parameter estimation can be obtained by using conventional point-based time series
techniques, e.g., conditional least squares (CLS). Note that the intercept parameter a0 of the ACI
model in (3.2) cannot be identified in the range model (3.4), since the point-based CLS estimator
utilizes the range sample only. Figure 1 suggests that the range and level of an interval-valued oil
price are correlated, thereby more efficient estimation and so better range forecasts using an ACI
model than the range model (3.4) could be obtained, as is confirmed in our empirical studies.
This is one advantage of the ACI model in (3.2) over the range model in (3.4) even if the interest
is in range forecasting.

Third, Yang et al. (2016) have shown that the speculation index, as a proxy of crude oil mar-
ket liquidity, is significant in capturing the dynamics of crude oil prices. Hence, we include the
lagged interval speculation term in the ACI model (3.2) to evaluate the predictability of specula-
tion by comparing the forecasting accuracy of the ACI models in (3.1) and (3.2) in the subse-
quent sections.

5ECt�1 ¼ ½12 ECt�1, 32 ECt�1� ensures that ECt�1 has the same coefficient in the range equation (3.4) and the midpoint
equation (3.5).
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Like the derived range model in (3.4), a midpoint model can also be derived from the original
ACI model in (3.2):

DMt ¼ a0 þ c1ECt�1 þ
X2
j¼1

bjDMt�j þ
X2
j¼1

hjuM, t�j þ c2MDSPE, t�2 þ uM, t , (3.5)

where Mt and MDSPE, t�2 are the midpoints of the original interval processes respectively; uM, t is
the midpoint of ut satisfies EðuM, tjIt�1Þ ¼ 0: Note that the scale parameter b0 cannot be identi-
fied in the midpoint model. Here, a practical issue might arise concerning our sample data.
Since the true data generating process (DGP) of the observed crude oil prices is unknown, par-
ameter estimates in the derived range model in (3.4) and the derived midpoint model in (3.5)
may have opposite signs if these two models are estimated separately. Indeed, data inspection
of our sample shows that for the midpoint data, DMt�1 and DMt are negatively correlated,
while for range data DRt�1 and DRt are positively correlated. Therefore, assuming that DMt�1

and DRt�1 share a same autoregressive parameter b1 as in the ACI model (3.2) is no longer ten-
able. To address this issue, we propose a simple data transformation of DFt�1, which substitutes
the interval-valued oil price Ft�1 ¼ ½Lt�1,Ht�1� with a new interval-valued variable F�t�1 ¼
½�Ht�1, � Lt�1�: Intuitively, F�t�1 can be viewed as a negative of Ft�1: As a result, the range of
DF�t�1 is DRt�1 and the midpoint of DF�t�1 is �DMt�1: Thus, the ACI model in (3.2) can be
modified as follows6

DFt ¼ a0 þ b0I0 þ c1ECt�1 þ b1DF
�
t�1 þ b2DFt�2 þ

X2
j¼1

hjDut�j þ c2DSPEt�2 þ ut: (3.6)

The coefficients of DF�t�1 in the derived midpoint and range models now share the same sign,
which makes the modified ACI in model (3.6) more sensible. Sometimes economic theories can
help check signs of some parameters. Otherwise, if relevant economic theories do not exist, a
plausible approach to checking the correlation between the regressand and regressor is running
CLS estimation for the midpoint and range models separately, using the original interval sample
data. The CLS estimators are consistent but not expected to be most efficient, because they make
use of the range and midpoint information separately.

Interestingly, the ACI models (e.g., model (3.6)) can be used to derive some important point-
based time series models as special cases. For example, one can immediately derive a bivariate
point-valued time series model for the lower and upper bounds:

DLt ¼ cL þ c1LEC, t�1 � b1DHt�1 þ b2DLt�2 þ
X2
j¼1

hjuL, t�j þ c2LDSPE, t�2 þ uL, t ,

DHt ¼ cH þ c1HEC, t�1 � b1DLt�1 þ b2DHt�2 þ
X2
j¼1

hjuH, t�j þ c2HDSPE, t�2 þ uH, t ,

8>>>>><
>>>>>:

(3.7)

where cL ¼ a0 � 1
2b0, cH ¼ a0 þ 1

2 b0, LEC, t�1 ¼ 1
2 ECt�1,HEC, t�1 ¼ 3

2ECt�1, LDSPE, t and HDSPE, t are
the lower and upper bounds of DSPEt , and EðuL, tjIt�1Þ ¼ EðuH, tjIt�1Þ ¼ 0: Note that there are
constraints on identical parameters except for the intercepts.

6The modified ACI model can be extended to a more general ACI(p, q) model of order (p, q):

DFt ¼ a0 þ b0I0 þ c1ECt�1 þ
Xp
j¼1

bjDFt�j þ
Xp
j¼1

b�j DF
�
t�j þ

Xq
j¼1

cjut�j þ
Xq
j¼1

c�j u
�
t�j þ ut ,

where u�t�j ¼ ½�uH, t�j , � uL, t�j�: Among other things, this can be used to address the important empirical stylized facts in
interval data, such as the fact that the midpoints at times t – j and t are negatively correlated while the ranges are
positively correlated.
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Analogous to the model (3.7), a bivariate point-valued time series model for the midpoint and
range processes from the ACI model in (3.6) can also be obtained:

DMt ¼ a0 þ c1ECt�1 � b1DMt�1 þ b2DMt�2 þ
X2
j¼1

hjuM, t�j þ c2MDSPE, t�2 þ uM, t ,

DRt ¼ b0 þ c1ECt�1 þ b1DRt�1 þ b2DRt�2 þ
X2
j¼1

hjuR, t�j þ c2RDSPE, t�2 þ uR, t ,

8>>>>><
>>>>>:

(3.8)

Different from separately modeling the midpoints and ranges respectively, this is a bivariate mod-
eling for the two-point processes with constraints on identical parameters except for the inter-
cepts, estimating all parameters simultaneously. It is observed that ACI models can be used to
capture some well-known empirical stylized facts, including mean-reversion. For example, b1 > 0
indicates the mean-reversion that historical returns eventually will revert to the long-run mean.

These derived point-valued models of endpoints in (3.7) and (3.8) have a bivariate modeling
flavor, but they cannot capture the most crucial feature of our interval modeling approach in
(3.6), namely, we treat an interval as a set of ordered numbers. We can follow the spirit of Han
et al. (2012) to estimate parameters for the parsimonious modified ACI model (3.6) by minimiz-
ing the distance between the modified ACI model and interval data. Interestingly, this distance
measure between intervals is based on the random sets theory, which employs not only the infor-
mation on distances between boundaries of an ITS but also the information on distances between
interior points. As a result, this interval modeling framework has an informational advantage of
utilizing rich information contained in interval data over a bivariate point-valued model. This is
expected to enhance model forecasting accuracy.

3.2. Estimation

Parameter estimation of the modified ACI model (3.6) can be accomplished by the minimum
DK-distance estimation method developed in Han et al. (2012). Based on the DK-distance measure
for sets, one can estimate unknown parameters / ¼ ða0, b0, b1, b2, h1, h2, c1, c2Þ0 in model (3.6) by
minimizing the squared DK distance between the interval model and the observed interval data:

Q̂Tð/Þ ¼
XT
t¼1

D2
K DFt,DF̂tð/Þ
� �

, (3.9)

where DF̂tð/Þ is the fitted value of DFtð/Þ based on model (3.6), and D2
KðA,BÞ denotes the

square of the DK distance between intervals A ¼ ½Al,Au� and B ¼ ½Bl,Bu� :
D2

KðA,BÞ ¼ d0Kd (3.10)

where d ¼ ðAu � Bu , � ðAl � BlÞÞ0, K is a 2� 2 matrix with K11 ¼ Kð1, 1Þ,K22 ¼ Kð�1, �1Þ,
K12 ¼ K21 ¼ Kð1, �1Þ ¼ Kð�1, 1Þ: We assume that K(u, v) is a symmetric positive definite
weighting function such that for u, v 2 S0 ¼ u 2 R1, juj ¼ 1

� � ¼ 1, � 1f g,
Kð1, 1Þ > 0,Kð1, �1Þ ¼ Kð�1, 1Þ
Kð1, 1ÞKð�1, �1Þ > Kð1, �1Þ2:

(
(3.11)

The objective function has a simple quadratic form as in (3.10), which can be numerically calcu-
lated given the boundaries of intervals. Han et al. (2012) have shown that the DK metric considers
the set of the absolute differences between all possible pairs of points (extreme and interior
points) in intervals A and B, with a proper weighting function implied by K(u, v). Thus, it utilizes
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interval information more efficiently than conventional point-valued time series techniques, e.g.,
model (3.4) with CLS.

Different choices of kernel K will deliver different estimators for /, and all of them are consistent
and asymptotically normal, provided the kernels satisfy (3.11). Following Han et al. (2012), we employ
a feasible two-stage minimum DK-distance estimator that is asymptotically most efficient among the

class of minimum DK distance estimators. First, we obtain a preliminary consistent estimator /̂: For
example, it can be a minimum DK-distance estimator with an arbitrary prespecified kernel K satisfy-

ing (3.11). Then, we compute the estimated residuals fûtð/̂Þg and construct an optimal kernel esti-

mator K̂
opt
(1, 1)¼T�1 PT

t¼1 û
2
L, tð/̂Þ, K̂

opt
(1,�1)¼K̂

opt
(�1, 1)¼ T�1 PT

t¼1 ûL, tð/̂ÞûH, tð/̂Þ, and

K̂
opt
(�1, �1)¼T�1 PT

t¼1 û
2
H, tð/̂Þ: Next, we obtain a second-stage minimum DK-distance estima-

tor with the choice of K ¼ K̂
opt

:

/̂
opt ¼ argmin

/2U
T�1

XT

t¼1
D2

K̂
opt DFt,DF̂tð/Þ
� �

:

Han et al. (2012) show that when Kopt is used, the objective function of the minimum DK-dis-
tance estimator becomes

varðuL, tÞ
XT
t¼1

û2
H, tð/Þ þ var ðuH, tÞ

XT
t¼1

û2
L, tð/Þ � 2 cov ðuL, t , uH, tÞ

XT
t¼1

ûL, tð/ÞûH, tð/Þ:

Thus, Kopt downweights the sample squared distance components that have larger sampling varia-
tions. Specifically, it discounts the sum of squared residuals of the upper (lower) bound if the
upper (lower) bound disturbance uH, t (uL, t) has a large variance. The use of Kopt also corrects
correlation between the left and right bound disturbances. Such heteroskedasticity and correlation
corrections are similar in spirit to the optimal weighting matrix in GLS, and improve estima-
tion efficiency.

3.3. Special cases of ACI models and interval-based estimation

Combining the midpoint and range time series models (e.g., (3.4) and (3.5)) yields an alternative
approach to forecasting intervals. In fact, one can estimate the univariate ARMAX type models
using CLS based on midpoint and range data separately, and then construct a one-step ahead
interval forecast as ½DM̂t � 1

2DR̂t ,DM̂t þ 1
2DR̂t�, where DM̂t and DR̂t are one-step-ahead point

predictors for DMt and DRt , respectively.
CLS estimators are convenient and they can consistently estimate most parameters in the ACI

model. However, in addition to the failure in identifying level parameter a0 or scale parameter b0,
these estimators are not most efficient because they make use of the range and level sample infor-
mation separately. Han et al. (2012) show that the CLS estimators using one attribute of an inter-
val time series are special cases of the minimum DK distance estimator, with specific choices of
kernel K(u, v). When the kernel KM with �KMð1, � 1Þ ¼ KMð1, 1Þ ¼ KMð�1, � 1Þ is used, the
minimum DK-distance estimator solves:

/̂M ¼ arg min
/M2U

XT
t¼1

D2
KM

ðDFt,DF̂tÞ ¼ arg min
/M2U

XT
t¼1

DMt � DM̂tð/Þ
� �2

, (3.12)

which boils down to the CLS estimator of the midpoint time series model (3.5). Similarly, when
the kernel KR with KRð1, � 1Þ ¼ KRð1, 1Þ ¼ KRð�1, � 1Þ is used, the minimum DK-distance esti-
mator becomes the CLS estimator for the range time series model:
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/̂R ¼ arg min
/R2U

XT
t¼1

D2
KR
ðDFt,DF̂tÞ ¼ arg min

/R2U

XT
t¼1

DRt � DR̂tð/Þ
� �2

: (3.13)

With the efficiency gain in estimation, it is expected that using the ACI methodology with the
two-stage minimum DK distance estimator outperforms the univariate time series models for
midpoints and ranges, in terms of the forecast accuracy. This is confirmed in our empirical study
on crude oil prices.

To estimate all parameters of the modified ACI model (3.6), one can consider the bivariate
point-based model (3.7) for the lower and upper bounds derived from the ACI model in (3.6).
When the kernel KLH with KLHð1, 1Þ ¼ KLHð�1, � 1Þ > 0,KLHð1, � 1Þ ¼ 0 is used, the minimum
DK-distance estimator minimizes the combined sums of squared residuals for the lower and upper
bound models together:

/̂LH ¼ arg min
/LH2U

XT
t¼1

D2
KLH

ðDFt,DF̂tÞ, (3.14)

where D2
KLH

ðDFt,DF̂tÞ ¼ DLt � DL̂tð/Þ
� �2 þ DHt � DĤ tð/Þ

� �2
: This is the constrained condi-

tional least square (CCLS) estimator for the lower and upper bound models. By using the bivari-
ate sample data for the two boundaries and the kernel KLH, the CCLS estimator assigns the same
importance on the information of the two boundaries and ignores the possible correlation
between them in the objective function. Thus, the CCLS estimator is not expected to be the most
efficient estimator for an ACI model. Furthermore, we can also construct a one-step-ahead inter-
val predictor ½DL̂t ,DĤt� given the past information set It�1, based on (3.7). They are less accurate
than the interval forecasts produced from the modified ACI model in (3.6) with the two-stage
minimum DK distance estimator, as confirmed in our empirical study.

Similarly, we can consider the bivariate time series model (3.8) for the midpoint and range
processes derived from the ACI model in (3.6). When the kernel KMR with KMRð1, 1Þ ¼
KMRð�1, � 1Þ ¼ 5, and KMRð1, � 1Þ ¼ 3 is used, the minimum DK-distance estimator becomes
the CCLS estimator that minimize the total sums of squared residuals for the midpoint and range
models together:

/̂MR ¼ arg min
/MR2U

XT
t¼1

D2
KMR

ðDFt,DF̂tÞ, (3.15)

where D2
KMR

ðDFt,DF̂tÞ ¼ DMt � DM̂tð/Þ
� �2 þ DRt � DR̂tð/Þ

� �2
: Note that KMR assigns the same

importance on the midpoints and ranges but ignores the possible correlation between them in
the objective function. We can construct the one-step-ahead interval predictor ½DM̂t �
1
2DR̂t ,DM̂t þ 1

2DR̂t� given the CCLS estimator /̂MR and model (3.8). However, these forecasts are
expected to be less accurate than the interval forecasts produced from the modified ACI model in
(3.6) with the two-stage minimum DK distance estimator, as confirmed in our empirical study.

4. Point-based models of crude oil prices

4.1. Point-based forecasting models for lows and highs of crude oil prices

This section presents two benchmark models as point-based counterparts of the interval-based
ACI models in forecasting the dynamics of crude oil prices.

ARMAX models for midpoint and range. As mentioned in Section 3, forecasting the interval-
valued crude oil prices can be accomplished by predicting two point-valued attributes, i.e., mid-
points and ranges, separately using the ARMAX models in (3.5) and (3.4), respectively. Here we
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re-write the benchmark models to explicitly allow the possibility that the parameters are not iden-
tical in the midpoint and the range models if they are not considered as being derived from an
ACI model:

DMt ¼ a0 þ cm1ECt�1 þ
X2
j¼1

bmjDMt�j þ
X2
j¼1

hmjuM, t�j þ uM, t ,

DRt ¼ b0 þ cr1ECt�1 þ
X2
j¼1

brjDRt�j þ
X2
j¼1

hrjuR, t�j þ uR, t ,

8>>>>><
>>>>>:

(4.1)

and by including the speculation factor we obtain:

DMt ¼ a0 þ cm1ECt�1 þ
X2
j¼1

bmjDMt�j þ
X2
j¼1

hmjuM, t�j þ cm2DMSPE, t�2 þ uM, t ,

DRt ¼ b0 þ cr1ECt�1 þ
X2
j¼1

brjDRt�j þ
X2
j¼1

hrjuR, t�j þ cr2DRSPE, t�2 þ uR, t ,

8>>>>><
>>>>>:

(4.2)

Different coefficients for midpoint and range processes can be estimated by the CLS method
using the midpoint and range data separately, as the special cases of the minimum DK-distance
estimator discussed in Section 3.3. Compared with the ACI model, the benchmark models in
(4.1) and (4.1) do not simultaneously utilize rich information of midpoint and range contained in
the interval sample when estimating model parameters.

Vector error correction model. The vector error correction (VEC) model is an alternative to
forecast two attributes of interval time series, i.e., highs and lows, using a bivariate time series
model that can explore correlations between them when estimating model parameters. It also
allows different coefficients in the equations of the two attributes. As a result, it is less parsimoni-
ous than an ACI model. The VEC model is written as:

DLt ¼ a10 þ aL1ECt�1 þ
X2
j¼1

bL1jDLt�j þ
X2
j¼1

bL2jDHt�j þ uL, t ,

DHt ¼ a20 þ aH1ECt�1 þ
X2
j¼1

bH1jDLt�j þ
X2
j¼1

bH2jDHt�j þ uH, t ,

8>>>>><
>>>>>:

(4.3)

where (Ht, Lt) is the bivariate vector of the logarithms of high and low within month t, and
ðuLt , uHtÞ is the bivariate disturbance. VEC models have been used to forecast stock prices or
crude oil prices in Cheung et al. (2009), He et al. (2010), and Arroyo et al. (2011). Similarly,
monthly logarithmic highs and lows of speculation could be included in the VEC model.

4.2. Point-based forecasting models for ranges of crude oil prices

As a quantitative measure of risk, volatility modeling is important to understand the nature of
the dynamics of volatilities. It is closely related to the stability of commodity markets, financial
markets and the real economy. In order to evaluate the performance of the ACI models in fore-
casting the monthly conditional variance of crude oil prices, we consider Glosten et al.’s (1993)
threshold GARCH model and Chou’s (2005) conditional autoregressive range (CARR) model
as benchmarks.

Threshold GARCH model. It is well known that crude oil returns have some stylized facts, such
as fat tails and leverage effects. As proposed by Glosten et al. (1993), the GJR model has several
advantages over other GARCH models, particularly in capturing asymmetric features (e.g., lever-
age effect) in volatility. Therefore, it has been frequently used in the literature (Wen et al., 2012;
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Du and He, 2015; Wang et al., 2016). We consider a point-valued GJR(1,1) model of the first dif-
ference of monthly average oil price DFAt :

DFAt ¼ cþ aDFAt�1 þ et , (4.4)

et ¼
ffiffiffiffi
ht

p
zt , (4.5)

ht ¼ d0 þ d1e
2
t�1 þ ce2t�1dt�1 þ d2ht�1, (4.6)

zt � skewed � tðg,/Þ, (4.7)

where the indicator dt�1 ¼ 1 when et�1 < 0, denoting bad news; otherwise dt�1 ¼ 0 indicating
good news. We can also include the lagged monthly speculation variables in the threshold
GARCH model and obtain a threshold GARCHX model. (4.4) decomposes DFAt into a condi-
tional mean and an innovation et , (4.5) defines the standardized error zt, and (4.6) describes the
dynamics of the conditional variance ht of DFAt: The coefficient c measures the difference
between the asymmetry effects of good news and bad news on the conditional variance. In (4.7),
the standardized error zt is assumed to follow the skewed-t distribution. This distribution has two
parameters: the degree of freedom parameter g which controls the tail thickness and the skewness
parameter / which controls the degree of asymmetry. If / > 0, the variable is skewed to the
right, and vice-versa when / < 0: When / ¼ 0, the standardized Student’s t distribution is
obtained. When g ! 1 and / ¼ 0, we obtain the standard normal distribution. The skewed t
distribution allows for a rich set of properties of financial returns, therefore, it has been fre-
quently used as a distribution model for zt in the literature (e.g., Patton, 2013).

The range is a much more efficient volatility proxy, which is known at least since the works of
Parkinson (1980) and Chou (2005). Andersen and Bollerslev (1998) show that daily range con-
tains approximately the same informational content as sampling intra-daily returns every four
hours. In fact, both the logarithmic range and the logarithmic absolute return are linear logarith-
mic volatility proxies. However, the standard deviation of the logarithmic range is about one
quarter of the standard deviation of the logarithmic absolute return; see e.g. Brandt and Jones
(2006). Therefore, the range is a much more informative volatility proxy. Range has provided bet-
ter out-of-sample forecasts of volatility than a standard GARCH model, as shown in Chou
(2005). Therefore, we also use CARR model proposed by Chou (2005) as another benchmark.

CARR Model. CARR is a range-based volatility model, which is described as:

Rt ¼ ktet , (4.8)

kt ¼ -þ
Xq
i¼1

aiRt�i þ
Xp
j¼1

bjkt�j, (4.9)

etjIt�1 � f ð�Þ, (4.10)

where Rt is the range at time t, kt is the conditional mean of Rt, and et is a standardized nonneg-
ative disturbance. To ensure positivity of kt, the coefficients in the conditional mean equation
(4.9) are assumed to be positive. The normalized range et follows a density function f ð�Þ with a
unit mean. A natural choice for the distribution of et is the standard exponential distribution.
Parameters of the CARR model can be consistently estimated by the quasi-maximum likeli-
hood method.
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5. Empirical results

5.1. Forecasting crude oil prices

In this section, we assess the one-step-ahead forecast performances of interval-based ACI models
and various popular point-based time series models introduced in Section 4.1 in forecasting vari-
ous attributes of oil prices including monthly price intervals and the midpoints, ranges, highs,
and lows of crude oil prices.

A rolling estimation scheme is adopted for a 10 year (120months) rolling window with the
first estimation sample spanning from January 1993 to December 2002. We conduct the one-
step-ahead out-of-sample forecasts from January 2003 to March 2018 and from January 2008 to
March 2018, respectively. There are S¼ 183 and S¼ 123 forecasting periods for each model,
respectively. For the fixed rolling window (120months), we compare the following models:

ARMAX: Univariate ARMAX models for midpoint and range processes separately, with
CLS estimation;
Bivariate MR: Bivariate models for the midpoints and ranges, with CCLS estimation;
Bivariate LH: Bivariate models for lower and upper bounds, with CCLS estimation;
VEC: VEC models for monthly highs and lows;
ACI (one-stage): ACI model with an arbitrary choice of kernel K, where Kð1, 1Þ ¼ 10,Kð�1, �1Þ ¼
17, and Kð1, � 1Þ ¼ 8;

ACI (two-stage): ACI model with two stage minimum DK-distance estimator /̂
opt
, using the pre-

liminary estimation result of ACI (one-stage) as the first stage.

5.1.1. Forecast criteria
We employ eleven criteria to evaluate forecast accuracy for crude oil prices. First, x1 and x2 dir-
ectly evaluate the monthly mean forecasts of oil price intervals; they are defined as follows:

x1 ¼ 1� 1
S

X
t

1ðFAt 2 L̂t , Ĥ t

� �
Þ, (5.1)

x2 ¼ 1� 1
S

X
t

minðĤt ,HtÞ �maxðL̂t , LtÞ
maxðĤ t ,HtÞ �minðL̂t , LtÞ

, (5.2)

where ½L̂t , Ĥ t� and ½Lt ,Ht� are the forecasted and actual intervals of oil price in month t; 1ð�Þ
denotes the indicator function with 1ð�Þ ¼ 1 if the monthly averaged price FAt 2 ½L̂t , Ĥ t� and
1ð�Þ ¼ 0 otherwise. The summations are taken over the forecast periods of S¼ 183 (S¼ 123).
Intuitively, x1 measures the percentage of monthly average crude oil prices which do not fall into
the forecasted intervals, while x2 measures the nonoverlapping area of the actual and forecasted
intervals. A smaller x1 or x2 implies better interval forecasts.

Next, we follow the spirit of Sun et al. (2018) to employ other five interval-based criteria to
measure the dissimilarity between an observed interval and its forecast. One is defined as

xMDE ¼ 1
S

X
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM̂t �Mtj2 þ jR̂t � Rtj2

q
, (5.3)

which is a special case of the mean distance error (MDE) defined in Arroyo et al. (2011). Two
other forecast criteria used in Rodrigues and Salish (2015) and Sun et al. (2018) are defined as:

xNSD1 ¼ 1
S

X
t

wð Lt ,Ht½ � [ L̂t , Ĥ t

� �
Þ � wð Lt ,Ht½ � \ L̂t , Ĥt

� �
Þ

wð Lt ,Ht½ � [ L̂t , Ĥ t

� �
Þ , (5.4)
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xNSD2 ¼ 1
S

X
t

wð L̂t , Ĥ t

� �
Þ þ wð Lt ,Ht½ �Þ

Rð Lt ,Ht½ � [ L̂t , Ĥ t

� �
Þ , (5.5)

where wð�Þ denotes the width of an interval, Rð�Þ denotes the range of an interval, \ is the inter-
section, and [ is the union. These two criteria measure the normalized symmetric difference
(NSD) of intervals, which can be considered as the nonoverlapping area of the actual and fore-
casting intervals. In addition, the noncoverage rate and nonefficiency rate in Rodrigues and Salish
(2015) and Sun et al. (2018) are defined as

xc ¼ 1� 1
S
wð Lt ,Ht½ � \ L̂t , Ĥ t

� �
Þ

wð Lt ,Ht½ �Þ , (5.6)

xe ¼ 1� 1
S
wð Lt ,Ht½ � \ L̂t , Ĥ t

� �
Þ

wð L̂t , Ĥ t

� �
Þ : (5.7)

For each of these five criteria, a smaller value implies a better interval forecast.
Third, another four point-based criteria are the root mean square error (RMSE) in forecasting

four-point attributes, i.e., the midpoint Mt, the range Rt, the low Lt and the high Ht, respectively.
With similar notations in (5.1) and (5.2), we have:

xM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
S

X
t

M̂t �Mt

� �2s
, (5.8)

xR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
S

X
t

R̂t � Rt

� �2s
, (5.9)

xL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
S

X
t

L̂t � Lt
� �2s

, (5.10)

and

xH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
S

X
t

Ĥ t � Ht

� �2s
: (5.11)

Finally, the interval U of Theil statistics (UI) used in Maia and de Carvalho (2011) is defined as

UI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t ðHtþ1 � Ĥ tþ1Þ2 þ
P

t ðLtþ1 � L̂tþ1Þ2P
t ðHtþ1 �HtÞ2 þ

P
t ðLtþ1 � LtÞ2

s
:

The UI statistic is suitable for comparing forecast errors with the random walk benchmark. UI < 1
implies that a forecasting model outperforms a random walk model, while UI 	 1 implies that the
forecasting model underperforms a random walk.

5.1.2. Forecasting results analysis
Tables 3 and 4 present an assessment of quality of mean forecasting results of various models
using the aforementioned criteria for interval forecasts. Results without and with the speculation
variable are reported in Panels A and B, respectively. We have the following important findings:

First, the ACI model with the two-stage estimator /̂
opt

generally delivers the best forecasting
results in most cases. One possible explanation is that it treats an interval observation as a set
and models the interval data directly, which more efficiently utilizes the rich information con-
tained in an interval data and so improves forecast accuracy. Another reason is the use of an
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estimated optimal kernel, which not only downweights large residuals of the left and right bounds
but also correct correlations between them.

Second, compared with the forecasting results of the ARMAX model with the CLS estimator
using midpoint and range data separately, the ACI model with two-stage interval-based estimator

/̂
opt

has gain in terms of forecasting ranges and midpoints, yielding smaller xR and xM than the
ARMAX models. It confirms that the level (midpoint) information contained in an interval data
will help even when the interest is in forecasting range only.

Third, turning to the derived bivariate point-based ARMAX models with CCLS estimation, we
find that when KMR is used to assign equal weights to range and midpoint observations for the
bivariate MR model, but ignore the possible correlation between them, the ACI model with the

two-stage estimator /̂
opt

outperforms the bivariate MR model in terms of almost all forecast crite-
ria. Similar results are obtained when KLH for the bivariate LH model is used, which assigns an
equal weight to the left and right bound observations but ignores their correlations. Again, the

ACI model with the two-stage estimator /̂
opt

performs better, thereby indicating the valuable
information contained in interval time series data.

Fourth, when the speculation term is added, the forecasting results of the interval-based and
point-based attributes all support that the ACI model with the two-stage minimum DK-distance
estimator outperforms the VEC model.

Furthermore, results in Panels A and B imply that including the speculation term SPEt gener-
ally improves upon the forecasting results for the models of ARMAX, bivariate LH and ACI

Table 3. Interval and point forecast performance criteria during 2003–2018.

Panel A: Forecasting models without speculation

Criteria ARMAX Bivariate MR Bivariate LH VEC ACI (One stage) ACI (Two stage /opt)

x1 0.5191 0.5246 0.5410 0.4918 0.5246 0.5191
x2 0.6693 0.6776 0.7590 0.6472 0.6520 0.6518
xMDE 0.0885 0.0927 0.1050 0.0849 0.0841 0.0840
xNSD1 0.6601 0.6676 0.6542 0.6383 0.6453 0.6447
xNSD2 0.6693 0.6918 0.7590 0.6472 0.6520 0.6518
xc 0.5200 0.5956 1.0210 0.5001 0.5063 0.5052
xe 0.5747 0.6381 0.5311 0.5486 0.5524 0.5533
xM 0.1088 0.1042 0.1244 0.0874 0.0853 0.0858
xR 0.0602 0.0827 0.1101 0.0582 0.0581 0.0574
xL 0.1246 0.1207 0.1633 0.1043 0.1027 0.1023
xH 0.0999 0.1029 0.1016 0.0780 0.0755 0.0768
UI 1.0356 1.1341 1.4720 0.9960 0.9750 0.9787

Panel B: Forecasting models with speculation

Criteria ARMAX Bivariate MR Bivariate LH VEC ACI (One stage) ACI (Two stage /opt)

x1 0.5355 0.5301 0.4973 0.4918 0.5191 0.4863
x2 0.6599 0.7461 0.6921 0.6500 0.6540 0.6471
xMDE 0.0870 0.1193 0.0884 0.0853 0.0857 0.0831
xNSD1 0.6501 0.6620 0.6465 0.6407 0.6467 0.6400
xNSD2 0.6599 0.7461 0.6921 0.6500 0.6540 0.6471
xc 0.5158 0.9592 0.5799 0.5070 0.5069 0.5000
xe 0.5648 0.4726 0.5425 0.5523 0.5585 0.5480
xM 0.0942 0.1531 0.0866 0.0881 0.0850 0.0842
xR 0.0593 0.1458 0.0828 0.0584 0.0616 0.0573
xL 0.1095 0.1508 0.1134 0.1050 0.1041 0.1007
xH 0.0867 0.1866 0.0746 0.0788 0.0742 0.0754
UI 0.9975 1.8364 1.0383 1.0031 0.9778 0.9625

(i). x1 measures the percentage of monthly average crude oil prices which does not fall into the forecasted intervals; xMDE
based on the mean distance error of intervals evaluates the forecasting interval as a whole; x2,xNSD1 and xNSD2 measure
the nonoverlapping area of the actual and forecasting intervals; xc and xe measure the noncoverage rate and nonefficiency
rate; xM ,xR,xL and xH measure the RMSE of the midpoints, ranges, lows and highs, respectively; and UI is the Theil statis-
tics. The smaller values of these measures, the better performance of the forecasts.

(ii). The statistics are computed over S ¼ 183 forecasting periods.
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(two-stage) that do not include SPEt , suggesting the predictive power of speculation in forecast-
ing crude oil prices. These results are robust to various forecast periods.

5.2. Forecasting the volatility of crude oil prices

In this section, we conduct out-of-sample forecasts and evaluate the performance of the ACI
model in forecasting volatility of oil prices. Our benchmarks are the ARMA(2,2)-GJR(1,1)-skewed
t and CARR models introduced in Section 4.2.

We use two measures of the ex post volatility: monthly return squared (MRSQ) and the sum
of squared daily returns (SSDR). SSDR is calculated by aggregating the squared daily returns
within each month. It is the realized volatility. The threshold GARCH model directly forecasts
the conditional variances of return series with SSDR and MRSQ. For the CARR and ACI models,

following the spirit of Parkinson (1980),7 the conditional variance forecast ĥt is obtained by the
following transformation from the range forecast R̂t :

ĥt ¼ R̂
2
t =ð4� ln ð2ÞÞ:

Table 4. Interval and point forecast performance criteria during 2008–2018.

Panel A: Forecasting models without speculation

Criteria ARMAX Bivariate MR Bivariate LH VEC ACI (One stage) ACI (Two stage /opt)

x1 0.5122 0.5122 0.5203 0.4634 0.5041 0.4959
x2 0.6753 0.6512 0.8062 0.6449 0.6476 0.6464
xMDE 0.0946 0.0899 0.1196 0.0902 0.0884 0.0882
xNSD1 0.6636 0.6397 0.6543 0.6342 0.6422 0.6400
xNSD2 0.6753 0.6512 0.8062 0.6449 0.6476 0.6464
xc 0.5256 0.5142 1.2609 0.4946 0.4957 0.4925
xe 0.5820 0.5884 0.5177 0.5497 0.5494 0.5501
xM 0.0978 0.0944 0.1430 0.0939 0.0906 0.0912
xR 0.0675 0.0632 0.1305 0.0645 0.0637 0.0628
xL 0.1182 0.1134 0.1909 0.1142 0.1113 0.1107
xH 0.0863 0.0834 0.1140 0.0818 0.0779 0.0796
UI 1.0440 1.0046 1.5867 1.0022 0.9696 0.9732

Panel B: Forecasting models with speculation

Criteria ARMAX Bivariate MR Bivariate LH VEC ACI (One stage) ACI (Two stage /opt)

x1 0.5528 0.5203 0.4878 0.4715 0.5041 0.4634
x2 0.6762 0.7526 0.7068 0.6495 0.6514 0.6395
xMDE 0.0935 0.1331 0.0943 0.0906 0.0906 0.0868
xNSD1 0.6630 0.6594 0.6430 0.6378 0.6447 0.6330
xNSD2 0.6762 0.7526 0.7068 0.6495 0.6514 0.6395
xc 0.5409 1.1108 0.6066 0.5046 0.4981 0.4849
xe 0.5814 0.4045 0.5350 0.5556 0.5593 0.5419
xM 0.0940 0.1757 0.0930 0.0949 0.0904 0.0891
xR 0.0674 0.1697 0.0957 0.0646 0.0682 0.0627
xL 0.1144 0.1679 0.1263 0.1151 0.1134 0.1086
xH 0.0828 0.2189 0.0769 0.0827 0.0761 0.0777
UI 1.0071 1.9692 1.0554 1.0116 0.9748 0.9528

(i). x1 measures the percentage of monthly average crude oil prices which does not fall into the forecasted intervals; xMDE
based on the mean distance error of intervals evaluates the forecasting interval as a whole; x2,xNSD1 and xNSD2 measure
the nonoverlapping area of the actual and forecasting intervals; xc and xe measure the noncoverage rate and nonefficiency
rate; xM ,xR,xL and xH measure the RMSE of the midpoints, ranges, lows and highs, respectively; and UI is the Theil statis-
tics. The smaller values of these measures, the better performance of the forecasts.

(ii). The statistics are computed over S ¼ 123 forecasting periods.

7Suppose a point particle undergoes a one-dimensional continuous random walk with a diffusion constant D. Parkinson (1980)
mentioned that the difference l between the maximum and minimum positions is a good estimator for the diffusion constant.
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Then, we compute the following mean-squared-erros (MSE) and the mean-absolute-errors
(MAD):

MSEðMRSQÞ ¼ S�1
X
t

ðMRSQ� ĥtÞ2, (5.12)

MSEðSSDRÞ ¼ S�1
X
t

ðSSDR� ĥtÞ2, (5.13)

MADðMRSQÞ ¼ S�1
X
t

jMRSQ� ĥtj, (5.14)

MADðSSDRÞ ¼ S�1
X
t

jSSDR� ĥtj: (5.15)

Table 5 reports the results of the two forecast evaluation criteria and p-values of the Diebold-
Mariano test. Models with (labeled with X in Table 5) and without the speculation variable are
examined. First, under the both criteria, the ACI models show an overwhelming pattern in pro-
ducing better volatility forecasts than the threshold GARCH models. The gain is remarkable
when SSDR is used under MSE criterion, where the MSE of the ACIX model with speculation is
about 25% smaller than that of the GARCHX model with speculation.

Second, in comparison with the CARR models, the ACI models have better forecasts for vola-
tility in most cases. The differences in the performance between the two models are observed for
both SSDR and MRSQ forecasts. As consistent with the threshold GARCH results, the improve-
ment of forecasting accuracy by the ACI models is usually much more obvious when SSDR is
used as a measure for realized volatility. This is a strong evidence for the advantage of ACI mod-
els, as the realized volatility, i.e., SSDR, uses more information (daily) and thereby is a more pre-
cise volatility measure than the MRSQ. Meanwhile, a closer examination of the results shows that
the ACI models always outperform the CARR models when the evaluation criterion MSE is used.
This indicates that the forecasting accuracy of ACI models are more stable than CARR models.

Table 5. Out-of-sample forecast of variance.

SSDR MRSQ

MSE (10–4) MAD (10–4) p Value MSE (10–4) MAD (10–4) p Value

Panel A: Out-of-sample forecast during 2003–2018

ACIX 1.5027 61.1661 1.6085 69.8612
GARCHX 2.0225 65.5813 0.0072 1.7820 71.7679 0.0033
CARRX 1.6297 61.3659 0.0101 1.6695 68.5758 0.0023
ACI 1.5348 61.2317 1.6399 69.8548
GARCH 1.9911 64.9084 0.0080 1.7981 72.5542 0.0034
CARR 1.6446 60.6901 0.0167 1.6567 67.7679 0.0026

Panel B: Out-of-sample forecast during 2008–2018

ACIX 1.9983 67.5978 2.2055 80.5409
GARCHX 2.7686 76.4896 0.0130 2.4639 83.0813 0.0061
CARRX 2.2094 69.7009 0.0187 2.3184 79.4855 0.0045
ACI 2.0409 67.4450 2.2506 80.7254
GARCH 2.7567 77.0499 0.0132 2.4983 85.2018 0.0061
CARR 2.2402 69.6156 0.0280 2.3132 79.0811 0.0046

(i). This table computes the mean-absolute-errors (MAD) and the mean-squared-errors (MSE) of conditional variance forecasts
of ACIX, GARCH, CARR models. p Value denotes the p-value of the Diebold-Mariano test for the significant outstanding per-
formance recorded by the ACI and ACIX models, respectively.

(ii). Two measured volatility are used. SSDR and MRSQ are the sum of squared daily returns over the month and the monthly
return squared, respectively.

(iii). GARCHX is fitted for the monthly return series with speculation, the CARRX is fitted for the monthly range series with
speculation, and the ACIX is fitted for the monthly interval-valued data series with speculation.

(iv) The data used are from January 1993 to March 2018. Rolling samples of 120 observations are used in fitting the models
and 183 and 123 observations are made for the out-of-sample forecasts, respectively.
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Furthermore, the p-value for the Diebold-Mariano test is almost smaller than 10%, which pro-
vides significant evidence for the superior performance of the ACI models to other existing mod-
els at the 10% significance level. All these results are robust to various forecast periods.

5.3. Trading strategy based on monthly interval forecasts: VEC vs ACI

As indicated in Section 5.1, the ACI model with the two-stage minimum DK-distance estimator
generally performs the best in out-of-sample mean forecasts within the ones derived from special
kernels, and it outperforms the VEC model in the majority of scenarios. This section further
investigates the relative performance between the VEC model and the ACI model with the two
stage estimator under a crude oil trading strategy in spirit of He et al. (2010). This trading strat-
egy makes use of monthly low-high forecasts of the oil price intervals in Section 5.1.

Let L̂tþ1 and Ĥ tþ1 be the one-step-ahead low and high forecasts of the crude oil price in
month t, produced after the t-th trading month is closed, and Ot and Ct denote the opening and
closing prices of the crude oil price in month t respectively. The monthly opening price Ot is
obtained by the average of the daily opening prices in month t. The trading rule is designed as
follows: A buy alert signal is generated if Ĥ tþ1 � Ot > Ot � L̂tþ1, after the t-th trading month is
closed. If the buy alert signal maintains for m consecutive months including month t, we place a
buy order in month t þm� 1 using the closing price of Ct�mþ1: Assuming that no short sale is
allowed, then a sell alert signal is generated in month s (s> t) if Ĥ sþ1 � Os < Os � L̂sþ1: A sell
will be made if the sell alert signal is observed for another m consecutive months including
month s with the execution price of Cs�mþ1: The investor can act according to the buy alert even
if she or he holds the previous positions. It is possible that there are unsold positions at the end,
thereby not being taken into account in profit calculation, because the sell alert signal has
appeared for less than m months in the end of the trading period.

The evaluation criterion of this trading strategy is based on the annualized returns (AR),
namely,

AR ¼ Ctþj � Ct

Ct
� 100%� 0:1%

� �
� 12

j
(5.16)

where Ctþj and Ct are the monthly closing prices of the selling and buying months, respectively.
When the profit of each trade is calculated, a one-way 0.1% deduction is considered to mimic
transaction cost.8 For details about this trading rule on daily basis, readers are referred to He
et al. (2010).

Before comparing the ACI models and the point-valued time series models, a simple buy-and-
hold trading rule is considered as an initial benchmark. An investor buys an asset at the begin-
ning and sells it at the end of the evaluation period. The annualized return of this naive trading
rule is 7.35%, which is smaller than the best of averaged annualized returns 10.01% for the VEC
model and 18.86% for the ACI model. Obviously, the trading rule based on highs and lows gener-
ates substantial economic gains.

The AR values obtained from the trading rule based on highs and lows are shown in Table 6,
where the results of the VEC and ACI models are reported on the left part and right part of the
table, respectively. Several patterns are immediately observed. First, using interval forecasts from
the ACI model generates more profits than the VEC model under most scenarios, in terms of the

8In the futures market, there is a practice of daily settlement or marking to market. Investors may take a risk arising from
large margin calls. Therefore, we also compute daily gains or losses of long positions before every sell action is triggered
during the evaluation period. It is found that the trading obtained from an ACI model usually has a smaller margin account
risk than that from the point-valued time series model for m¼ 2, 3, and 4, respectively. This indicates again that the use of
interval information can improve profitability of crude oil modeling. The relevant empirical results are available from the
authors upon request.
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averaged AR and the percentage of trades with positive profits. Though ACI forecasts yield
slightly less profits than VEC forecasts when m¼ 1, it has a remarkable gain over the VEC model
under the other cases. For example, when m¼ 4 and the ACI model with speculation is used, the
averaged AR is 15.09% and the frequency of profitable trades is about 49.15%. However, the VEC
model with speculation delivers an averaged percentage loss of �13% and the frequency of posi-
tive profits is only 31.92%.

Second, the averaged AR generally increases for ACI models with increasing m, which can be
viewed as a measure for the persistence of oil price momentum. In particular, the most profitable
result under this trading strategy appears for the ACI model with speculation and m¼ 3, where
the averaged AR reaches 18.86%, and over 63.16% of the total trades generate positive returns.
On contrary, when VEC forecasts are used, the trading rule results in a negative averaged per-
centage profit and more negative returns than positive returns for most cases, with exception on
the VEC model with speculation and m¼ 2.9

Table 6. Performance of VEC and ACI models of trading strategy.

VEC ACI

With speculation No speculation With speculation No speculation

Panel A: m¼ 1
Averaged AR �6.288 �8.676% �11.430% �12.079%
Largest AR from any trade 124.460% 124.460% 98.384% 80.048%
Smallest AR from any trade �313.922% �313.922% �179.706% �179.706%
Number of trades 127 127 128 119
% of trades with positive AR 56.693% 55.906% 50.000% 47.899%
Sharpe ratio �0.110 �0.140 �0.239 �0.241

Panel B: m¼ 2
Averaged AR 10.014% �24.593% �5.293% �5.124%
Largest AR from any trade 125.914% 52.655% 66.649% 69.266%
Smallest AR from any trade �268.449% �268.449% �170.481% �170.481%
Number of trades 93 92 104 94
% of trades with positive AR 66.667% 34.783% 51.923% 56.383%
Sharpe ratio 0.117 �0.477 �0.143 �0.143

Panel C: m¼ 3
Averaged AR �19.036% �21.510% 18.857% 1.954%
Largest AR from any trade 18.982% 15.261% 102.328% 66.649%
Smallest AR from any trade �238.334% �238.334% �115.032% �96.405%
Number of trades 69 67 76 66
% of trades with positive AR 30.435% 35.821% 63.158% 60.606%
Sharpe ratio �0.496 �0.502 0.345 0.003

Panel D: m¼ 4
Averaged AR �13.004% �16.613% 15.092% 16.626%
Largest AR from any trade 8.633% 8.633% 94.290% 94.290%
Smallest AR from any trade �179.097% �179.097% �94.437% �94.437%
Number of trades 47 44 59 50
% of trades with positive AR 31.915% 31.82% 49.153% 50.000%
Sharpe ratio �0.514 �0.503 0.271 0.303

(i). All return figures in Table 6 are expressed in annualized terms: AR ¼ ðCtþj�Ct
Ct

� 100%� 0:1%Þ � 12
j , where Ctþj and Ct are

the monthly closing prices of the selling and buying months respectively, 0:1% is the transaction cost of each trade.
(ii). The forecast horizon m carries over 1,2,3, and 4months, and the corresponding results are reported in Panels A–D,
respectively.

9When the trading rule for m¼ 2 is considered, the VEC model with and without speculation deliver different trading results
during the period from 2004 to 2008. As it is well known, crude oil prices had increased markedly in those years. In May
2008, WTI crude oil futures prices reached as high as U.S. $125.46 per barrel. As a result, a number of slightly different buy-
sell actions can lead to a great difference in the trading profits. This explains why the two types of VEC models differ greatly
in the average returns for m¼ 2.
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When assessing the robustness of the trading performance, there is an overwhelming pattern
on the largest and smallest ARs between the VEC and ACI models. Specifically, the extreme loss
of the ACI model is much smaller than the VEC model across all cases, together with a higher
extreme percentage profit in most cases. For example, when m¼ 4 the worst percentage lost of
ACI forecasts is only half of that when VEC forecasts are used, while the magnitude of the best
annualized profit of ACI forecasts can be as high as 11 times of that of the VEC forecasts.

We also employ the Sharpe ratio to evaluate the performance of various trading results:

SR ¼ l
r
, (5.17)

where l and r are the sample mean and the sample standard deviation of excess ARs, respect-
ively. From Table 6, we can draw the same conclusion that the ACI model outperforms the VEC
model in most cases. The trading strategies based on ACI forecasts yield higher Sharpe ratios
than most of the investments based on VEC forecasts. In particular, for m¼ 3 and m¼ 4, the
Sharpe ratios based on ACI models are all positive, while those based on VEC forecasts are nega-
tive. The largest value of Sharpe ratio based on ACI forecasts is 0.345, which is about three times
of that based on VEC forecasts.

Note that the ACI model is much more parsimonious than the VEC counterpart. This implies
that the latter may capture more subtle features of oil prices in the short run, and hence yields a
little bit greater averaged ARs (although negative) in most cases when an investor uses forecasts
for only one or two months. However, a complex model usually tends to over-fit price dynamics.
As a result, the ACI model-based strategies have greater averaged ARs for m¼ 3, 4. Overall
speaking, the ACI methodology can produce stable and profitable results when the low-high
based trading strategy is adopted.

6. Conclusion

So far, most studies in crude oil price forecasts in the literature focus on point-valued closing
price data and few have made good use of the interval-valued price data which contains rich
information about the price dynamics. An interval can be characterized by two pairs of attributes:
the lower (low) and upper (high) bounds, or equivalently the midpoint and range at a discrete
time interval (e.g., daily, monthly), which are key components of trading in commodity and
financial markets. The goal of this article is to provide a unified and parsimonious framework to
forecast interval-valued crude oil prices. We use the newly proposed ACI models to forecast
monthly crude oil prices, which are tailored to some important features of the crude oil market
and are estimated by the minimum DK-distance method. Rich information contained in interval-
valued oil price observations can be simultaneously utilized, thus enhancing parameter estimation
efficiency and model forecasting accuracy.

The data used in this paper are monthly interval-valued WTI crude oil futures prices from
January 1993 to March 2018. We have the following important empirical findings:


 Compared with existing point-based models, the modified ACI models proposed by this paper
improve the out-of-sample forecasting of monthly oil price intervals, as well as the forecasts
for highs, lows, and ranges of oil prices.


 For volatility forecasts, the ACI models also beat the popular return-based threshold GARCH
and range-based CARR models. Compared with the range CARR model, the ACI models gen-
erate superior forecasts for realized volatility and monthly squared returns in terms of the
MSE criterion.


 The interval-valued speculation improves the forecast accuracy of crude oil prices and volatil-
ity in ACI models, while this improvement disappears in other point-based methods. This
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implies that our interval modeling framework has an informational advantage of utilizing rich
information contained in interval data over point-valued models.


 In order to illustrate an economic benefit of high and low forecasts, a trading strategy is
examined. Substantially more profits are usually obtained under the interval-based ACI fore-
casts than the point-based VEC forecats.

In sum, the superior out-of-sample forecast performance of the ACI models confirms that the
ACI models with the minimum DK distance estimation can efficiently utilize the rich information
in interval-valued time series data, which can be explored to improve estimation efficiency and
forecast accuracy. Our empirical findings have potentially important implications for policy mak-
ings and decision makings in crude oil markets.

It would be interesting to extend the modified ACI models to more sophisticated interval
models to capture nonlinear features of an interval time series process, which may be more effect-
ive for forecasting volatility, highs, and lows of an interval time series. On the other hand, it will
be also desirable to compare the out-of-sample volatility forecasts of the modified ACI models
with other competing volatility models in the existing literature (Ewing et al., 2019; Hansen and
Lunde, 2005; Herrera et al., 2018; Mei et al., 2019; Zhang et al., 2019). Furthermore, one can also
apply the ACI models and their generalizations to investigate various aspects of risk management
such as optimal hedging ratio, economic equivalence, and value-at-risk. All these topics are left
for future work.
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