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ABSTRACT 

This study presents new evidence on the role of volatility jumps under the range-

based model. We dissect the components of the high–low range into its continuous 

and discontinuous (jump) parts, using daily realized measures data from the 

Oxford–Man Realized Library. Based on the conditional autoregressive range 

(CARR) model, a new model called CARR-CJ is developed by separately modeling 

the dynamics of the continuous variation and jumps in the range. The results reveal 

that the jump component has longer volatility half-life and smaller short-run impact 

on future volatility compared to the continuous component, an indication of the 

differences in the dynamics of the two range processes. More importantly, the 

CARR-CJ model performs significantly better than the CARR benchmark as well 

as the heterogeneous autoregressive with continuous volatility and jumps (HAR-

CJ) model for both in-sample fit and out-of-sample forecasting, especially at longer 

forecast horizons. Moreover, the results of this study are quite robust to employ 

other volatility measures and forecast evaluation methods, as well as include well-

known exogenous variables, such as the leverage effect, into the CARR-CJ model. 
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1. INTRODUCTION 

As the seminal paper by Merton (1976) considered jumps in asset prices when analyzing 

movements in markets, a growing number of studies have started to address the issue of detecting 

jumps and measuring the sizes thereof (Andersen et al., 2007; Christensen et al., 2010; Corsi et al. 

2010, among others). Aït-Sahalia (2004) indicated that jumps play an important role in finance, 

such as in risk management, portfolio allocation, and derivative pricing. 

In theory, at present, there are two primary procedures to test the presence of jumps, namely, 

parametric and nonparametric. The parametric procedure relies on low-frequency transaction data 

(Aït-Sahalia, 2002; Andersen et al., 2002; Eraker et al., 2003), while the nonparametric procedure 

exploits high-frequency transaction prices or mid-quotes in a model free framework (Andersen et 

al., 2007; Andersen et al., 2009; Corsi et al., 2010; Jiang and Oomen, 2008; Lee and Mykland, 

2008; Mancini, 2009; Podolskij and Ziggel, 2010). Barndorff-Nielsen and Shephard (2004, 2006) 

were pioneers in the use of five-minute high-frequency data for constructing the so-called bipower 

variation and nonparametrically separate the quadratic variation process into its continuous and 

jump components. Building on their theoretical method, Andersen et al. (2007) and Corsi et al. 

(2010) decomposed the realized volatility into its continuous and discontinuous jump parts and 

established a heterogeneous autoregressive with continuous volatility and jumps (HAR-CJ) model, 

which provided superior predictability of future volatility. Corsi and Renó (2012) further proposed 

a LHAR-CJ model based on the HAR-CJ model with leverage effects and suggested that the 

continuous variation and jump component had different dynamics, and thus, should be modeled 

separately; neglecting each one of them is detrimental to the forecasting performance. In another 

study by Buncic and Gisler (2017), they evaluated the importance of jumps and the leverage effect 

on the high-frequency realized volatility in eighteen international equity markets, using the HAR-

CJ and LHAR-CJ models. They found that the separation of realized volatility into a continuous 

and a jump component is beneficial only for the S&P 500 index and it has limited value for the 

non-US markets. It is noteworthy that results from the abovementioned studies are almost 

exclusively grounded upon the return-based volatility models, while completely ignoring the 

application of range-based volatility models in finance. 

It is a well-known fact that high–low range is considered as an alternative to measuring, 

modeling, and forecasting asset volatility. Parkinson (1980) stated that the range is an effective 

estimator of volatility regardless of any interval. Empirical results of Brandt and Jones (2006) and 

Molnár (2016) determined that using the price range to proxy volatility in the generalized 

autoregressive conditionally heteroscedastic (GARCH) type models produced better out-of-

sample forecasting performance. Degiannakis and Livada (2013) also show, using simulation 

studies, that the range as a volatility estimator is more accurate than the realized volatility estimator. 

Chou (2005) first proposed a range-based conditional autoregressive range (CARR) model to 

describe the dynamics of the price range and found that the CARR model significantly 

outperformed the renowned GARCH model.1 Nevertheless, a few studies have focused on the role 

                                                      
1 For a comprehensive review of the important developments in ways of estimating range-based volatility, see Chou 
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of jumps in price range. For example, Christensen and Podolskij (2006) were pioneers to propose 

the significant jump test in the framework of the realized range-based volatility (RRV). In 

empirical work, Caporin et al. (2015) and Ma et al. (2018) investigated the contribution of jumps 

on forecasts of the daily RRV based on the HAR-type specifications. 

Contrary to realized measures models, this paper aims to consider the importance of jumps 

in volatility forecasting by directly using the range-based model. For this purpose, we introduce a 

CARR-CJ model with jumps as an alternative approach, which extends the original CARR model 

by modeling the continuous and discontinuous (jump) parts of a range separately. The motivation 

for using the price range instead of the high-frequency data based realized range is that the realized 

range is not often publicly available, but the low-frequency data based price range is usually free 

and widely available. Following Andersen et al. (2007), we utilize aggregate daily realized 

measures data from the Oxford–Man Realized Library and nonparametrically separate the daily 

price range into its continuous and jump components. To the best of our knowledge, the present 

study is the first to incorporate jumps in a low-frequency price range modeling and forecasting 

based on the classic CARR framework. 

Various international equity market indices are examined comprehensively to evaluate the 

relative performance of the CARR-CJ model against the CARR benchmark and the HAR-CJ 

model of Andersen et al. (2007). Empirical evidence shows that the jump component has longer 

volatility half-life and smaller short-run impact on future volatility than the continuous component; 

an indication that the market dynamics for the continuous and jump parts of a range are very 

different. In this paper, each component was modeled via a separate CARR model with its own 

parameters. Moreover, the CARR-CJ model outperforms the CARR benchmark as well as the 

HAR-CJ model for in-sample fit and out-of-sample forecasting. We note that the improvements in 

forecast performance are particularly apparent for longer forecast horizons. In addition, our results 

have been found to be quite robust to employ other volatility measures and forecast evaluation 

methods, as well as include well-known exogenous variables, such as the leverage effect, into the 

CARR-CJ model. 

Our paper makes several contributions. First, existing studies on the role of jumps in financial 

markets are almost exclusively grounded upon HAR framework using realized measures. To fill 

this gap, we are the first to propose a new range-based model with jumps dubbed CARR-CJ, which 

should enrich the related research on volatility jumps. Moreover, the Oxford–Man Realized 

Library database is publicly available and contains aggregate daily realized measures; thus, access 

to the high-frequency intraday data from which these realized measures were constructed is not 

required. Second, based on a non-linear dynamic structure, our model is different from the HAR-

type models, that are built on a simple linear regression structure. That is, the proposed model has 

more flexibility to capture the dynamic behavior of volatilities. Thus, we can analyze the 

asymmetry of the continuous and jump parts of a range by comparing the magnitudes of the short-

run impact and long-run persistence in nature. Empirical results provide consistent evidence 

                                                      
et al. (2015). 
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supporting the asymmetry between these two parts. Third, by decomposing price range into jumps 

and continuous variation, our model can yield substantial improvements in volatility forecasting 

compared with the CARR and HAR-CJ models, especially at longer horizon forecasts. It is clear 

from this study that each of the components in the price range plays an unneglectable role in 

explaining future volatility based on the framework of the range-based model, mainly because 

jumps not only convey additional trading information but also remove noise from the continuous 

component (Corsi et al., 2010). These findings can be of great importance for some relevant 

financial applications, such as risk management and asset pricing. 

The rest of the paper is organized as follows. Section 2 presents a brief review of the classic 

CARR model and proposes the CARR-CJ model with theoretical discussions. Section 3 outlines 

the econometric methodologies used in this paper. Section 4 describes the detailed empirical 

results. Section 5 contains some concluding remarks. 

2. THE CARR-CJ MODEL 

Let tp  denote a logarithmic asset price at time t, driven by a geometric Brownian motion 

with stochastic volatilities. We let 
H

tp  and 
L

tp  be the high and low prices in natural logarithm 

on day t. Hence, the logarithmic price range tR  can be defined as follows: 

L

t

H

tt ppR   .                                                           (1) 

Garman and Klass (1980) reported that the price range is a highly efficient volatility estimator 

compared with the return-based estimator. 

One of the first range-based models to capture the time variation of volatility (Chou, 2005) 

was the CARR model, which is now most commonly used as a benchmark range model. The 

CARR(p,q) has the following form: 

tttR  , 
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p
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i.i.d.  ), ,1(~1  fItt ,  
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 

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q

j

j

p

i

i  , 

where ][ 1 ttt IRE  represents the conditional mean of the range based on all information up to 

day t−1. The parameters  , i , and j  characterize the inherent uncertainty in the range, the 

short-term impact, and the long-term effect of shocks to the range, respectively. Generally, 

coefficient i  tells us how much weight we assign to the most recently observed volatility proxy 

(price ranges). If we receive a larger i  , the performance of the model should be better. The 

distribution of the disturbance term t , or the so-called normalized range ttt R  / , is assumed 

to be dispersed with a nonnegative density function f(·) with a unit mean. Chou (2005) empirically 
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demonstrated that the CARR model dominated the GARCH model in forecasting volatilities of 

S&P 500 using daily and weekly observations. Since it is generally known that CARR(p,q) of an 

order higher than (1,1) is seldom useful (see, e.g., Chou, 2005; Chou and Liu, 2010; Xie, 2019), 

we study the CARR model only in its simplest version, i.e., the CARR(1,1) model: 

11   ttt R   .                                                      (2) 

Since we do not study CARR models of higher orders, we sometimes refer to the CARR(1,1) 

model simply as the CARR model. 

We proceed to demonstrate how to identify the continuous and jump parts of a range while 

constructing the CARR-CJ model. In financial econometrics, it is well known that the quadratic 

variation (QV) that measures the variation of asset price processes is composed of a continuous 

and a discontinuous (or jump) part, defined as follows: 







tst

s

t

t
st dsQV

1

2

1

2   ,                                                   (3) 

where  
t

t
s ds

1

2   is the continuous integrated variation of the process, and 
2

s   is the squared 

discontinuous jump at time s. Inference on the continuous and jump parts of tQV  has been studied 

in detail in the literature (see, e.g., return-based theory of Andersen et al., 2007 and range-based 

theory of Christensen and Podolskij, 2006, 2007). Given the asymptotic theory, these two 

methodologies can draw the same inferences about the diffusive and jump components. Due to the 

availability of realized return-based measures, we resort to employ the return-based theory for 

making inferences. We start by introducing the notational framework.2 

The empirical counter part of tQV  is called the realized variance (RV), which is simply the 

sum of squared observed intraday returns, 





M

i

itt rRV
1

2

,  ,                                                            (4) 

where 1,,,  ititit ppr  denotes the time t log return observed in the i-th interval of an equidistant 

grid on ] ,1[ tt  , with a total of M intervals and M + 1 observed log-prices pt,i. It is well known 

that tRV  is a consistent estimator for tQV , 

t

p

t QVRV   .                                                           (5) 

However, in the presence of jumps, tRV  is biased for the integrated variation with the jump terms 

inducing the bias. Alternatively, the (realized) bipower variation (BPV) of Barndorff-Nielsen and 

Shephard (2004), defined as the sum of the product of adjacent absolute intraday log returns 

standardized by a constant, is a consistent estimator for the continuous variation even in the 

presence of jumps: 

                                                      
2 Note here that since we are working with a publicly available database that contains aggregate daily realized return-

based measures and we do not have access to the high-frequency intraday data from which these were constructed, 

it is not feasible for us to employ the range-based theory. 
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








  
t

t
s

M
M

i

ititt dsrrBPV
1

2

2

1,,

2   ,                                      (6) 

where 79788.0/2    is a finite sample bias correction term , M is the sample frequency 

within interval ] ,1[ tt  , and itr ,  is the discretely-sampled i-th intraday log return for day t. Thus, 

the difference between tRV  and tBPV  consistently estimates the part of tQV  due to jumps as: 




 
tst

s

M

ttt BPVRVJ
1

2  .                                            (7) 

To prevent the estimates of the squared jump variation defined by the right hand-side of Eq. (3) 

from being negative in finite samples, we follow Barndorff-Nielsen and Shephard (2004) to 

truncate the actual empirical measurements at zero. That is: 

]0 ,[ max ttt BPVRVJ   .                                                  (8) 

The continuous component then is defined as: 


 

t

t
s

M

ttt dsJRVC
1

2  .                                             (9) 

These estimators provide a complete decomposition of tQV . Following Aït-Sahalia and Jacod 

(2012), we denote the relative contribution of continuous variation and jumps, respectively, to 

tQV  as follows: 

t

tC

t
QV

C
  ,                                                             (10) 

t

tJ

t
QV

J
 ,                                                              (11) 

where 1 J

t

C

t  . Christensen and Podolskij (2006) proposed a range-based theory to replace 

RV with the squared range to draw inference about tQV  of asset prices. According to their work, 

the partitioning of squared range induced by the continuous and jump components can be done 

using their respective contribution to tQV , that is: 


part jump

2

part continuous

22

t

J

tt

C

tt RRR    

   22

t

J

tt

C

t RR    

   22

tt RJCR   ,                                                     (12) 

where tRC  and tJR  denote the continuous and the jump part of a price range, respectively. In 

other words, tRC   is estimated by
t

C

t R   and tJR   is estimated by
t

J

t R  . We will use this 

decomposition of price range extensively in our analysis below. 

Grounded on the above, we can establish a CARR-CJ model to make empirical researches on 

both tRC  and tJR  in a range volatility to forecast the future volatility in financial markets. The 

CARR-CJ model of order (p,q) is presented as follows: 
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Under this approach, the different dynamics of the continuous and jump components can be 

characterized by the different values of pairs of parameters, ),( JC  , ),( J

i

C

i  , and ),( J

j

C

j  , 

and the disturbance density )) ,1(), ,1((  JC ff . Empirical studies on five major international equity 

market indices (Australia AORD, American DJI and S&P 500, Hong Kong HSI, and Japan NK 

225) have demonstrated that the market dynamics of these two range processes are indeed different 

and that the CARR-CJ model can outperform the standard CARR model in volatility forecasting. 

Furthermore, to evaluate the superiority of the CARR-CJ model, we also study its simplest version, 

i.e., the CARR-CJ(1,1) model: 

C

t

C

t

CCC

t CR 11     ,                                               (13) 

J

t

J

t

JJJ

t JR 11     .                                                (14) 

3. MODEL ESTIMATION AND FORECAST 

Given that the CARR-CJ model has exactly the same form as the CARR model, the two 

models in our paper are estimated consistently via quasi-maximum likelihood estimation (QMLE) 

method.3 Since the evolutions of the continuous and jump parts are specified independently, the 

two parts can be estimated separately. Specifically, assuming that the disturbance term follows an 

exponential distribution with unit mean and using tR  as a general notation of tRC  and tJR , the 

log-likelihood function for each part of the range series can be written as follows:4 

                                                      
3 Engle and Russel (1998) proved that under some regularity conditions, parameters in the CARR models can be 

estimated consistently by QMLE in which the density function of the disturbance term t  is given by a unit mean 

exponential density function. See also Engle (2002) for further discussions. 
4  Chou (2005) substantiated that the exponential density function can be used for constructing the likelihood to 
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












T

t t

t
t

R
LLF

1

)ln(


  ,                                                  (15) 

where T is the sample size. 

Both in-sample and out-of-sample forecasts are used to assess the performance of the CARR 

and CARR-CJ models. We start by comparing the in-sample forecasting power of these two 

volatility models by calculating the mean absolute error (MAE), the root mean squared error 

(RMSE), and the quasi-likelihood (QLIKE) of Bollerslev et al. (1994) as follows: 




 
T

t

tt mTm
1

1 )(FVMV)(MAE  ,                                          (16) 

 
5.0

1

21 )(FVMV)(RMSE 







 




T

t

tt mTm  ,                                    (17) 
















T

t t

t

t

t

mm
Tm

1

1 1)
)(FV

MV
ln(

)(FV

MV
)(QLIKE ,                                (18) 

where MVt and FVt (m) are the measure of volatility and the forecasted value reported by model 

m, respectively. Smaller MAE, RMSE, and QLIKE represent lower forecasting error. According 

to Patton (2011), the QLIKE statistic is more consistent and robust to outliers in volatility proxy 

than others, indicating that the error emanated from using a noisy proxy does not change the 

ranking of our forecasting methods. 

To examine the differences between the forecasting powers of these two competing volatility 

models, CARR and CARR-CJ, we follow Mincer and Zarnowitz (1969) and run the following 

regression: 

ttt umba  )(FVMV  .                                                   (19) 

For the CARR-CJ model, the range forecasts are obtained by taking the sum of the forecasts of the 

continuous and jump parts. A test of the unbiasedness of the predicted volatility can be performed 

by a joint test of a = 0 and b = 1. Adjusted R-squared value is also used as the criterion for assessing 

forecasting powers of different models.5 Since volatility is a latent variable, we use the 5-min 

realized volatility as the measure of volatility, defined as follows: 





M

i

itRV r
1

2

,  ,                                                          (20) 

where itr ,  denotes the time t log return observed in the i-th interval of an equidistant grid. 

To determine the relative information content of the two competing volatility models, we also 

run a forecast encompassing regression developed by Chong and Hendry (1986) from Eq. (19): 

tttt ucba  )CJ-CARR(FV)CARR(FVMV  .                              (21) 

                                                      
consistently estimate the parameters by QMLE in the conditional mean equation. 

5 Note here that the range forecasts through CARR-type models usually have a scale difference from the measured 

volatilities (e.g., return-based volatility), so FVt will not have a coefficient of unity even if it is unbiased. Following 

Chou (2005), we therefore focus primarily on the comparison of forecast powers of the two competing models. 
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The model positioned in front and behind of the encompassing regression refers to a benchmark 

and the competing model, respectively. The null hypothesis is that the benchmark model 

encompasses the competing model. When 0b   and 0c , the null hypothesis should be 

rejected, and we conclude that the competing model contains information that the benchmark 

model does not. Similarly, we say that the benchmark model encompasses the competing model if 

0b  and 0c . When both parameters have non-zero values (i.e., b and c are both significantly 

different from zero), then the competing model is believed to cover information that is in addition 

to that delivered by the benchmark model. 

For out-of-sample forecasts, we analyze the one- and multi-step-ahead forecasts because it is 

useful to compare these two models at longer horizons, and following Chou (2005), a rolling 

(moving) window estimation procedure is carried out. For multi-step-ahead predictions, the 

iterated strategy is implemented in our study. To be specific, the whole T data observations are 

divided into an in-sample portion composed of the first k observations and an out-of-sample 

portion composed of the last s observations. An initial sample using observations 1 to k is used to 

estimate the models and to form h-step ahead out-of-sample forecasts starting at time k. Then the 

window is moved ahead one-time period, the models are re-estimated using observations 2 to k + 

1 and h-step ahead out-of-sample forecasts are produced starting at time k + 1. This process is 

repeated until all forecasts for the out-of-sample period are obtained. 

Brandt and Jones (2006) argued that these forecast evaluation statistics were not capable of 

testing whether the difference between forecasting performances is significant from the statistical 

view. To tackle this problem, we employ the Diebold and Mariano (1995) (henceforth DM) to test 

the null hypothesis that the two forecast series have exactly the same predictive accuracy and hence 

are statistically indistinguishable. Let the forecast error of model i be 

tittie ,, FVMV                                                            (22) 

We test the superiority of model i over model j with a t-test of ji ,   coefficient with 

heteroskedasticity and autocorrelation consistent (HAC) robust standard errors because loss 

differentials may be serially correlated as follows: 

tjitjti ee   ,

2

,

2

,  ,                                                      (23) 

where a negative estimate of ji ,  indicates support for model i and t  is an i.i.d. zero-mean 

error term. We set the newly proposed CARR-CJ model as model i, and the standard CARR model 

as model j in this paper. 

It should be underlined that the values forecasted through the CARR and CARR-CJ models 

usually have a scale difference from MV (see Parkinson, 1980).6 Thus, before we get to conduct 

the out-of-sample analysis, we have to adjust forecasts according to their respective scales as 

                                                      
6 Parkinson (1980) proposed range with scaling factor 2ln41/  as an unbiased estimator for return volatility under 

the assumption that, during the day, the log-price follows a geometric Brownian motion with zero drift. In other 

words, return volatility and range relationship is 2ln4)/E( tR . However, the relationship is not truly empirical 

if we consider that the volatilities are serially correlated and thus the independence assumption does not hold. In 

practice, we replace the constant scaling factor with the coefficient r̂  from Eq. (25). 
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follows: 

rkrrkrrrkr m   ,1,1,1 )(FVMV   ,                                        (24) 

1,,2 ,1 ,0  ),(FVˆ)(AFV   srmm hrkrhrk   ,                             (25) 

where r is the number of adjusting procedures and h is the forecast horizon. The regression is re-

estimated at each forecast horizon using a window of k observations indexed 1 + r,…, k + r (rolling 

scheme). We proceed in this manner through the end of the out-of-sample period. 

4. EMPIRICAL ANALYSIS 

This section describes the empirical analysis. We present results of the in-sample analysis in 

Section 4.1 and those of the out-of-sample analysis in Section 4.2. The robustness checks of those 

results are provided in Section 4.3. Further analysis is presented in Section 4.4. 

4.1 In-Sample Analysis 

To support our idea of splitting the low-frequency price range into its continuous and jump 

components, empirical investigations are conducted on five equity market indices. We collect the 

daily data of the Australia AORD index (2000/01/04–2020/01/15), the American DJI and S&P 

500 indices (2000/01/03–2020/01/15), the Hong Kong HSI index (2000/01/03–2020/01/15), and 

the Japan NK 225 index (2000/02/02–2020/01/15). Each data set is downloaded from the finance 

website of “Yahoo.com” for open, high, low and close prices and the publicly available Oxford–

Man Institute’s Realized Library of Heber et al. (2009) for RV and BPV measures sampled at 5-

min intervals. Due to small differences in trading days in different equity markets, the number of 

observations varies to some degree. 

Table 1 summarizes descriptive statistics of three estimators (the high–low range in Panel A, 

the continuous part in Panel B, and the jump part in Panel C) and the realized volatility used as a 

benchmark in Panel D. First, range and its components are seriously right-skewed with high 

kurtosis, indicating a deviation from the normal distribution.7 Jarque–Bera tests clearly reject the 

null of a Gaussian distribution in all series. Second, the Ljung–Box Q statistics indicate strong 

persistence on both the continuous and jump components, especially on the former, which exhibits 

the best-known volatility clustering effect and is of high predictability, especially for the 

continuous component. Third, jumps tend to be more volatile than the continuous variation for 

comparing the standard deviation to the mean, as expected. Accordingly, these preliminary 

statistical analyses of the data encourage us to use the CARR model of Chou (2005) for range 

volatility estimation and can be viewed as a primitive indicator of the difference between the 

dynamic structures of the two components. Fourth, the remaining estimator is considered as a 

reference. Comparing with the average of the high–low range in the table, the range average is 

much higher than the realized volatility. This confirms the implementation of the scale factor 

                                                      
7 The sample kurtosis is above the normal value of 3 for a series, indicating that the distribution of the series is highly 

leptokurtic (fat tail) due to a few outliers. 
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TABLE 1 

SUMMARY STATISTICS OF DIFFERENT VOLATILITY MEASURES 

 AORD DJI HSI NK 225 S&P 500 

Panel A: Price range     

Sample size 5,052 5,024 4,901 4,866 5,027 

Max. 0.081 0.122 0.176 0.138 0.109 

Min. 0.001 0.002 0.003 0.002 0.001 

Mean 0.010 0.013 0.014 0.014 0.013 

Sd. 0.006 0.010 0.009 0.009 0.010 

Skew. 3.014 3.296 3.972 3.579 3.100 

Kurt. 20.025 22.472 40.588 28.630 19.836 

JB× 10−3 68.661*** 88.468*** 301.403*** 143.575*** 67.424*** 

Q(12) × 10−2 126.452*** 201.326*** 129.807*** 105.967*** 212.892*** 

Panel B: Continuous component     

Max. 0.081 0.108 0.176 0.138 0.109 

Min. 0.001 0.002 0.003 0.002 0.001 

Mean 0.009 0.011 0.013 0.012 0.012 

Sd. 0.006 0.009 0.008 0.009 0.009 

Skew. 3.080 3.492 4.222 3.871 3.232 

Kurt. 21.024 24.674 47.184 32.867 21.231 

JB× 10−3 76.371*** 108.551*** 413.215*** 193.015*** 78.369*** 

Q(12) × 10−2 132.887*** 205.143*** 126.603*** 108.749*** 215.726*** 

Panel C: Jump component     

Max. 0.036 0.088 0.062 0.056 0.070 

Min. 0.000 0.000 0.000 0.000 0.000 

Mean 0.003 0.005 0.004 0.004 0.005 

Sd. 0.003 0.006 0.004 0.004 0.005 

Skew. 2.291 3.329 2.856 2.431 3.191 

Kurt. 13.368 25.550 21.118 18.604 21.769 

JB× 10−3 27.046*** 115.727*** 73.694*** 54.162*** 82.316*** 

Q(12) × 10−2 7.358*** 39.003*** 22.976*** 7.517*** 41.438*** 

Panel D: Realized volatility     

Max. 0.039 0.093 0.066 0.057 0.088 

Min. 0.001 0.001 0.002 0.001 0.001 

Mean 0.006 0.008 0.009 0.009 0.008 

Sd. 0.003 0.006 0.005 0.005 0.006 

Skew. 2.889 3.515 3.204 2.758 3.216 

Kurt. 17.038 26.851 22.474 17.905 22.174 

JB× 10−3 48.509*** 129.431*** 85.828*** 51.217*** 85.674*** 

Q(12) × 10−2 188.187*** 260.462*** 253.662*** 208.475*** 287.504*** 

NOTE: The table reports the summary price range, continuous component, jump component, and realized volatiltiy 

statistics for the five equity indices listed (Australia AORD, American DJI and S&P 500, Hong Kong HSI, and Japan 

NK 225). The sample period is from Jan 3, 2000 to Jan 15, 2020. The Jarque–Bera (JB) statistic is used to test the null 

hypothesis that the series is normally distributed. Q(k) denotes the Ljung–Box Q statistics for k-th order 

autocorrelation of the series. The numbers of the last two rows of each panel in this table are JB × 10−3 and Q(k) × 

10−2. *** denotes significance at the 1% level. 

adjustment on range forecasts.8 As highlighted by Anderson et al. (2000), the realized volatility 

presents the highest autocorrelation owing to the market microstructure noise. 

Figure 1 displays the time series plots of the continuous component in blue and the jumps in 

red over the sample period. The different dynamics observed in the two parts of the range suggest 

that there is novel information in this decomposition that might help predict future volatility. To 

get a better understanding of the contribution of jumps to the price range, following Aït-Sahalia 

and Jacod (2012), we estimate the relative contribution of the two continuous and jump 

                                                      
8 Please see footnote 6 above. 
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FIG. 1.  Time Series of Range − Continuous and Jump Components 

NOTE: This figure depicts the continuous and jump elements of the high–low price range for the five equity indices 

(Australia AORD, American DJI and S&P 500, Hong Kong HSI, and Japan NK 225). 

components, respectively, to the squared price range, as defined in Eq. (12): 
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Table 2 reports the percentage contribution of the continuous and jump parts to the squared range 

for all the equity indices estimated as in Eq. (26). We find that the contribution of the total jumps 

varies between 11% and 20% and has a mean of about 15.363%, indicating that jumps are an 

indispensable component of daily equity price movements, in line with the results in Andersen et 

al. (2007) and Huang and Tauchen (2005).9 In addition, using the continuous and jump measures, 

we can also see if the level of the jumps matters in modeling and forecasting volatility on the basis 

of the range-based model. 

Table 3 presents the correlations of the range measures of the five equity markets in the entries  

below the diagonal of each panel. We find that jumps are relatively highly correlated with both Rt 

                                                      
9 In Huang and Tauchen (2005) study, the average contribution of total jumps to the total realized variance is about 

17.319% for the S&P 500 index futures from April 21, 1982 to April 18, 1997. 
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TABLE 2 

CONTRIBUTION OF THE SQUARED CONTINUOUS AND JUMP COMPONENTS TO THE TOTAL 

SQUARED PRICE RANGE VARIABILITY 

 AORD DJI HSI NK 225 S&P 500 Average 

(%)CR  88.958 80.123 86.424 84.873 82.808 84.637 

(%)JR  11.042 19.877 13.576 15.127 17.192 15.363 

NOTE: This table reports the percent contribution of the daily squared continuous and jump components to the total 

squared range variability for five equity indices (Australia AORD, American DJI and S&P 500, Hong Kong HSI, and 

Japan NK 225). The percentages of total price range variation attributable to each component are as follows: 
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TABLE 3 

CORRELATIONS BETWEEN VOLATILITIES OF FIVE EQUITY INDICES 

 Rt CRt JRt 

Panel A: AORD    

Rt 1   

CRt 0.992*** 1  

JRt 0.590*** 0.492*** 1 

Panel B: DJI    

Rt 1   

CRt 0.968*** 1  

JRt 0.679*** 0.489*** 1 

Panel C: HSI    

Rt 1   

CRt 0.988*** 1  

JRt 0.597*** 0.476*** 1 

Panel D: NK 225    

Rt 1   

CRt 0.990*** 1  

JRt 0.549*** 0.432*** 1 

Panel E: S&P 500    

Rt 1   

CRt 0.977*** 1  

JRt 0.658*** 0.499*** 1 

NOTE: This table reports the correlation between the different range measures for each equity index. *** denotes 

significance at the 1% level. tCR  and tJR  are the continuous and jump parts of the price range, respectively. 

and CRt at the 1% level of significance. Interestingly, the level of correlation between the total 

range and the continuous part is somewhat greater than that between the total range and the jump 

part. The difference levels of correlations observed in price range dissected by the RV and BPV 

measures suggest that there is novel information in this decomposition that might help predict 

future volatility. 

Results of estimations for the price range and its continuous component (CARR-C) and jump 

component (CARR-J) together with values of the log-likelihood function (LLF) and the Ljung–

Box Q statistics are presented in Table 4. The results show that the asymmetry in the dynamic 

structures for the continuous and jump parts as values of coefficients   and   in CARR-C  

and CARR-J models is quite different. On the other hand, the higher values for LLF occur with 
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TABLE 4 

IN-SAMPLE ESTIMATION RESULTS OF CARR MODEL AND CARR-CJ MODEL 

 410         Half-life LLF Q(12) 

Panel A: AORD       

CARR 1.877(0.000) 0.153(0.000) 0.828(0.000) 0.980 35.779 187.107 15.249(0.228) 

CARR-C 1.799(0.000) 0.159(0.000) 0.821(0.000) 0.980 35.108 
187.116 15.682(0.206) 

CARR-J 0.260(0.001) 0.035(0.000) 0.955(0.000) 0.990 67.328 

Panel B: DJI       

CARR 2.321(0.000) 0.209(0.000) 0.773(0.000) 0.981 38.044 174.489 19.815(0.071) 

CARR-C 2.537(0.000) 0.231(0.000) 0.746(0.000) 0.977 30.368 
174.526 19.112(0.086) 

CARR-J 0.314(0.002) 0.068(0.000) 0.926(0.000) 0.994 111.609 

Panel C: HIS       

CARR 1.718(0.000) 0.113(0.000) 0.874(0.000) 0.987 53.294 164.522 16.963(0.151) 

CARR-C 1.768(0.000) 0.119(0.000) 0.866(0.000) 0.985 48.166 
164.522 15.133(0.236) 

CARR-J 0.291(0.001) 0.039(0.000) 0.954(0.000) 0.992 92.358 

Panel D: NK 225       

CARR 3.644(0.000) 0.197(0.000) 0.776(0.000) 0.973 26.592 164.089 45.569(0.000) 

CARR-C 3.365(0.000) 0.202(0.000) 0.771(0.000) 0.973 26.518 
164.097 46.686(0.000) 

CARR-J 0.360(0.004) 0.045(0.000) 0.947(0.000) 0.992 85.607 

Panel E: S&P 500       

CARR 2.544(0.000) 0.216(0.000) 0.763(0.000) 0.980 34.892 174.080 27.061(0.008) 

CARR-C 2.850(0.000) 0.235(0.000) 0.739(0.000) 0.974 27.783 
174.110 23.367(0.025) 

CARR-J 0.250(0.001) 0.068(0.000) 0.926(0.000) 0.995 131.808 

NOTE: The CARR model 11   ttt R   , where tR   is the price range. The CARR-CJ model
C

t

C

t

CCC

t CR 11      and J

t

J

t

JJJ

t JR 11     , where tCR   and tJR   are the continuous and jump 

parts of the price range, respectively. Both CARR and CARR-CJ models are estimated using the QMLE method. LLF 

is the log likelihood function and is multiplied by 10−2. Q(k) is the Ljung-Box Q statistic for the autocorrelation test 

with k lags. Numbers in parentheses are p-values for model coefficients and Q(k) statistic. 

the newly proposed CARR-CJ model, indicating that the CARR-CJ model fit improves compared 

with the CARR model. The Ljung–Box Q test statistics with 12 lags (Q(12)) reveal a serial 

correlation in residuals at the 5% level of significance, except for AORD, DJI, and HSI in both 

models, indicating that there is information left in the residuals that should be used for computing 

forecasts. A possible consideration for inclusion is the leverage effect of Black (1976) and Nelson 

(1991). As is well known, the lagged asset return contributes to forecasting of financial volatility. 

If the dynamics of both range and its components depend on the lagged asset return, the leverage 

effect can capture the serial correlation in residuals and reduce the value of Q(12) statistic. We 

subsequently test this hypothesis by taking into consideration the leverage effect (see Section 4.3). 

It is more interesting to compare the results of the CARR-C model with those of the CARR-

J model. First, the persistence parameter, measured by   , is higher for the jump component 

than for the continuous component by about 0.7%–2.2%. We take a look at the volatility half-life 

of Engle and Patton (2001) and find that the jumps take the longest days to revert back to half of 

their mean, indicating that the price jump has a significant impact on the long-run forecast of the 

volatility.10 Taking the S&P 500 equity index as an example, the half-life of the price range, 

continuous part, and jump part is 35, 28, and 132 days, respectively. This means that a shock in 

jump will take 132 days for the jump volatility to return half way back to its mean value. Second, 

the shock effect in the short-run, measured by the coefficient  , is much lower for the jump 

                                                      
10 Engle and Patton (2001) defined half-life as the time required for the volatility to move half way back toward its 

unconditional mean. 
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TABLE 5 

MAE, RMSE, AND QLIKE STATISTICS OF IN-SAMPLE FORECASTS BY CARR AND CARR-CJ 

 MAE RMSE QLIKE 

Panel A: AORD    

CARR 0.405 0.473 15.954 

CARR-CJ 0.386 0.452 15.104 

Ratio 0.954 0.957 0.947 

Panel B: DJI    

CARR 0.473 0.600 12.688 

CARR-CJ 0.435 0.551 11.675 

Ratio 0.921 0.919 0.920 

Panel C: HSI    

CARR 0.521 0.607 12.418 

CARR-CJ 0.491 0.573 11.599 

Ratio 0.943 0.945 0.934 

Panel D: NK 225    

CARR 0.506 0.603 12.103 

CARR-CJ 0.480 0.573 11.442 

Ratio 0.948 0.950 0.945 

Panel E: S&P 500    

CARR 0.492 0.619 13.361 

CARR-CJ 0.458 0.573 12.436 

Ratio 0.931 0.927 0.931 

NOTE: This table computes the MAE, RMSE, and QLIKE using the following equations: 
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where MVt and FVt (m) are, respectively, the measure of volatility and the predictions reported by model m. Entries 

in bold indicate that the CARR-CJ model outperforms the CARR model. The MAE, RMSE, and QLIKE reported in 

this table have been multiplied by 100. 

component than for the continuous component, by about 67.2%–78.0%. Taking the Australia 

AORD equity index as an example, the shock effect in the CARR-C model declines 78%, from 

0.159 to 0.035, in the CARR-J model. These results suggest that the jump component has a longer 

half-life and smaller short-run impact on future volatility compared to the continuous component. 

Third, the coefficients   for the CARR-C model are somewhat higher than their corresponding 

elements in the standard CARR model. This seems to indicate that the continuous component is a 

less noisy volatility proxy than the price range as we have removed noise (jumps) from the 

continuous component in the volatility proxy, which is consistent with the finding in Corsi et al. 

(2010). 

To the best of our knowledge, the abovementioned findings are new in the literature on range-

based models as no existing studies distinguish the shock asymmetry in this fashion. Moreover, 

the message from this section is clear: the dynamic evolutions of the continuous and jump 

components are relatively different. They are different in their dynamics of the volatility shocks, 

i.e., the short-run impact and volatility persistence. Note that the Ljung–Box Q statistics show that 

neither CARR nor CARR-CJ model for NK 225 and S&P 500 is sufficient; thus, exogenous 

variables might be necessary to assure a model passes misspecification tests. 

Although the above empirical results suggest explicit differences between models for the 

continuous and jump components, we further examine if the separation of the price range into its  

two parts is useful to predict financial volatility. In view of the return-based analysis, Corsi et al. 
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TABLE 6 

IN-SAMPLE COMPARISON FOR CARR-CJ VERSUS CARR ON REALIZED VOLATILITY 

 Explanatory variables   

Measured volatility Constant × 104 FV(CARR) FV(CARR-CJ) Adj. R2 (%) 

Panel A: AORD     

RV  −1.086(0.502) 0.615(0.000)  53.888 

RV  −1.477(0.370)  0.633(0.000) 54.263 

RV  −1.637(0.333) −0.784(0.001) 1.436(0.000) 54.426 

Panel B: DJI     

RV  −1.571(0.417) 0.673(0.000)  66.748 

RV  −4.050(0.048)  0.717(0.000) 67.546 

RV  −4.797(0.046) −0.300(0.134) 1.033(0.000) 67.623 

Panel C: HSI     

RV  −1.612(0.566) 0.647(0.000)  64.031 

RV  −2.803(0.317)  0.671(0.000) 64.263 

RV  −3.614(0.202) −0.541(0.107) 1.232(0.000) 64.316 

Panel D: NK 225     

RV  2.318(0.147) 0.633(0.000)  60.784 

RV  1.218(0.476)  0.656(0.000) 60.811 

RV  1.624(0.347) 0.274(0.198) 0.372(0.092) 60.841 

Panel E: S&P 500     

RV  −1.728(0.351) 0.658(0.000)  70.108 

RV  −3.680(0.051)  0.694(0.000) 70.806 

RV  −4.420(0.033) −0.369(0.041) 1.080(0.000) 70.903 

NOTE: In-sample volatility forecasts comparison using realized volatility )( RV as a measured volatility. Numbers in 

parentheses are heteroskedasticity and autocorrelation consistent (HAC) p-values. For the forecast regression analysis, 

ttt umba  )(FVMV , 

where MVt and FVt (m) are the measure of volatility and the predictions reported by model m, respectively. For the 

forecast encompassing regression analysis, 

tttt ucba  )CJ-CARR(FV)CARR(FVMV . 

(2010) showed that jumps had a positive and mostly significant impact on future volatility, and 

that the performance of the volatility model that explicitly incorporated the jumps was significantly 

improved. Similar results were also obtained by Andersen et al. (2007). Accordingly, in this section, 

we further compare the forecasting power of the standard CARR model with that of the CARR-

CJ model, which considers the jumps. Given our new findings of the different dynamics of the two 

components, we would expect the CARR-CJ model to perform better than the standard CARR 

model in terms of both in-sample fit and out-of-sample forecasting ability. 

As for in-sample performance, we use the entire sample to produce forecasts with the 

competing models. Table 5 reports the in-sample MAE, RMSE, and QLIKE. Panels A to E report 

the MAE, RMSE, and QLIKE separately for both the CARR and CARR-CJ models across the five 

equity indices we have considered. For the CARR-CJ model, the range forecasts are obtained by 

adding the squared continuous forecasts to the squared jump forecasts first and then taking the 

square root, as shown in Eq. (12). We also calculate the ratio of MAE (RMSE, QLIKE) reported 

by the CARR- CJ model to the MAE (RMSE, QLIKE) reported by the CARR model. The ratio 

provides the relative performance of the CARR-CJ model to the CARR model. If the ratio is 

smaller than one, then the CARR-CJ model outperforms the CARR model in the in-sample fit of 
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the data. Consistently, the in-sample forecasting results show that the CARR-CJ is the best 

performing model in all five equity indices; the three criteria and the ratio statistics show that the 

CARR-CJ model makes smaller errors than the CARR model in forecasting the 5-min realized 

volatility ( RV ), as defined in Eq. (20). Hence, by exploiting the differences in the dynamic 

structures of these two movements to generate volatility forecasts, the CARR-CJ model delivers 

the best forecasts. 

To get further insights into the difference between the CARR-CJ and CARR models, we use 

regression-based tests to assess the ability of these two competing models to predict realized 

volatility. In addition to examination for coefficients, we also examine the regression R2’s. Table 

6 presents the regression results on realized volatility. The results clearly show the uniform 

superiority of the CARR-CJ model as follows: (1) the encompassing regression results show the 

dominance of the CARR-CJ model over the CARR model. Once the forecasts reported by the 

CARR-CJ model are included, the forecasts reported by the CARR model provide insignificant 

explanatory power or have a negative coefficient; (2) forecasts given by the CARR-CJ model are 

more informative than those by the CARR model as the adjusted R2 statistics of the CARR-CJ 

model are higher than those of the CARR model in all cases. 

4.2 Out-of-Sample Analysis 

Out-of-sample forecasting performance is crucial to the market participants. Following Chou 

(2005), we perform out-of-sample forecasting using the rolling window approach. For each equity 

index, we split the whole data set into an in-sample set (60%) and an out-of-sample set (40%). We 

employ one-step- and multi-step-ahead forecasts because it is useful to compare the selected 

models at longer horizons. The forecast horizons (h) range from 1 to 66 days (one quarter). The 

first end date is December 1, 2011 (AORD), January 11, 2012 (DJI), January12, 2012 (HSI), 

January 26, 2012 (NK 225), and January 12, 2012 (S&P 500), whereas the last end date is October 

10, 2019 (AORD), Octocber10, 2019 (DJI), October 10, 2018 (HSI), October 3, 2019 (NK 225), 

and October 8, 2019 (S&P 500). Following Patton (2011), we focus on the RMSE and QLIKE 

criteria, as both criteria are more robust to noisy proxy of the latent volatility than others.11 Table 

7 presents the RMSE, QLIKE, and DM statistics for the CARR and CARR-CJ models with respect 

to realized volatility. We report five forecast horizons with daily (1 day ahead), weekly (5 days 

ahead), monthly (22 days ahead), bi-monthly (44 day ahead), and quarterly (66 days ahead) only, 

in order to save space.12 The results for the five equity indices are reported separately across the 

five horizons we consider. The bottom rows report the list of the models and the fraction of times 

a given model is best across the five equity indices for a given horizon. From Table 7, we note 

that across horizons and equity indices, the CARR-CJ model is the best performing model in 

100% of the cases using the RMSE and QLIKE criteria. Besides, 24 out of 25 or 96% of the cases  

show that the CARR-CJ model’s RMSE is statistically lower than that of the CARR model at the 

                                                      
11 A robust criterion yields rankings of competing volatility forecasts to be robust to the noise in the volatility proxy 

(see Patton, 2011). 
12 Results for remaining forecast horizons are available upon request. 
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TABLE 7 

RMSE AND QLIKE STATISTICS OF THE OUT-OF-SAMPLE FORECASTS ON REALIZED 

VOLATILITY BY CARR AND CARR-CJ: ROLLING WINDOW APPROACH 

 RMSE QLIKE 

 Horizon (days) Horizon (days) 

 1 5 22 44 66 1 5 22 44 66 

Panel A: AORD          

CARR 0.201 0.222 0.242 0.247 0.255 4.837 5.902 7.313 7.762 8.327 

CARR-CJ 0.200 0.220 0.240 0.245 0.252 4.815 5.872 7.216 7.613 8.137 

Ratio 0.996 0.994 0.992 0.990 0.988 0.995 0.995 0.987 0.981 0.977 

DM stat. −1.991** −2.362** −3.868*** −4.903*** −6.194*** −1.069 −0.779 −2.937*** −4.699*** −5.995*** 

Panel B: DJI          

CARR 0.293 0.350 0.397 0.416 0.432 6.113 9.112 13.225 15.074 16.545 

CARR-CJ 0.290 0.345 0.386 0.402 0.413 5.960 8.965 12.688 14.240 15.398 

Ratio 0.991 0.986 0.972 0.965 0.957 0.975 0.984 0.959 0.945 0.931 

DM stat. −1.138 −2.211** −4.847*** −6.070*** −8.782*** −2.181** −1.275 −5.573*** −6.420*** −8.261*** 

Panel C: HSI          

CARR 0.223 0.249 0.274 0.277 0.294 3.642 4.434 5.552 5.974 6.824 

CARR-CJ 0.220 0.246 0.269 0.272 0.288 3.529 4.324 5.400 5.738 6.536 

Ratio 0.985 0.986 0.984 0.979 0.977 0.969 0.975 0.973 0.960 0.958 

DM stat. −5.080*** −3.662*** −4.378*** −7.225*** −8.608*** −6.943*** −4.233*** −4.465*** −7.958*** −9.049*** 

Panel D: NK 225          

CARR 0.317 0.369 0.422 0.436 0.447 5.208 7.620 11.062 12.185 13.007 

CARR-CJ 0.315 0.364 0.416 0.429 0.439 5.133 7.470 10.725 11.721 12.487 

Ratio 0.993 0.988 0.986 0.983 0.981 0.986 0.980 0.970 0.962 0.960 

DM stat. −2.019** −2.833*** −5.372*** −6.574*** −7.939*** −2.701*** −2.915*** −4.984*** −6.750*** −7.944*** 

Panel E: S&P 500          

CARR 0.265 0.328 0.378 0.400 0.419 6.163 9.498 13.752 15.870 17.519 

CARR-CJ 0.261 0.322 0.367 0.386 0.400 5.991 9.305 13.210 15.025 16.346 

Ratio 0.985 0.982 0.971 0.964 0.955 0.972 0.980 0.961 0.947 0.933 

DM stat. −2.557** −3.252*** −4.982*** −6.626*** −9.986*** −3.373*** −2.342** −6.054*** −7.158*** −9.431*** 

Model Fraction of times a model is the best 

CARR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

CARR-CJ 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

NOTE: This table computes the RMSE and QLIKE using the following equations: 

  ,)(FVMV) ,(RMSE

5.0

1

1












 







T

t

htht mThm  ,1)
)(FV

MV
ln(

)(FV

MV
) ,(QLIKE

1

1
 






















T

t ht

ht

ht

ht

mm
Thm  

where MVt and FVt (m) are the measure of volatility and the predictions reported by model m, respectively. All tests 

are out-of-sample and carried out using the rolling window approach. We only report cases with h =1, 5, 22, 44, and 

66 days. Smaller RMSE (QLIKE) means lower forecasting error. Bold entries and negative values of the DM test 

indicate that the CARR-CJ model beats the CARR model. The RMSE and QLIKE reported in this table have been 

multiplied by 100. The bottom rows report the list of models and the fraction of times a given model is best across the 

five equity indices for a given horizon. ***, **, and * represent 1%, 5%, and 10% levels of significance, respectively. 

10% level; whereas 22 out of 25 or 88% of the cases show the CARR-CJ model’s QLIKE is 

statistically lower than that of the CARR model at the 10% level.13 An interesting finding is that 

the CARR-CJ model delivers rather superior performances at longer horizons since the ratio 

statistics decrease with the forecast horizons. Taking the S&P 500 equity index as an example, the 

ratio statistic is 0.985 (0.972) at the 1-day horizon and 0.955 (0.933) at the 66-day horizon using 

the RMSE (QLIKE) criterion. Consistent with the ratio statistics, the DM statistics are much larger 

and more significant at longer horizons than those at shorter horizons in all cases. The reason for 

                                                      
13 Ahoniemi and Lanne (2013) ran the Diebold–Mariano test to examine if a realized volatility estimator incorporating 

overnight information is more accurate for thirty equities in the US stock market with a 10% confidence level. 
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FIG. 2.  Cumulative Absolute and Squared Forecast Error Differences (American DJI Index) 

NOTE: This figure depicts the cumulative absolute forecast error (CAFE) difference and cumulative squared forecast 

error (CSFE) difference for the range forecasts using the CARR and CARR-CJ models. CAFE difference and CSFE 

difference are defined, respectively, as follows: 
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where MVk is the measure of volatility and FVk is the prediction reported by the CARR and CARR-CJ models. If the 

curve increases, the CARR-CJ model outperforms the CARR model, whereas the opposite holds if the curve decreases. 
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this result is that since the possibility of occurrence of jumps at longer horizons is higher than at 

shorter horizons, the CARR-CJ model could largely improve the forecasting power on realized 

volatility in the days following a jump; thus, the fact that the CARR-CJ model slightly outperforms 

the CARR model at shorter horizons is not surprising as the difference between the two forecasts 

is primarily during the days following a jump, which may be few at shorter horizons. 

To comprehensively examine the relative contribution afforded by the CARR-CJ model, 

following Welch and Goyal (2008), we use the out-of-sample forecast errors to compute the 

cumulative absolute forecast errors (CAFE) difference and the cumulative squared forecast errors 

(CSFE) difference for the CARR and CARR-CJ models. The CAFE and CSFE differences are 

defined, respectively, as follows: 


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22 ]))CJ-CARR(FV(MV))CARR(FV(MV[CSFE  .                 (28) 

Positive and increasing values of CAFEt or CSFEt suggest that the CARR-CJ model’s 

predictability generates more accurate forecasts than the CARR benchmark with the time varying. 

Figure 2 plots CAFEt, shown in solid line, and CSFEt, shown in dashed line, on different forecast 

horizons using realized volatility as a reference. Because of space constraints, we only present the 

cases on the American DJI index for five forecast horizons, i.e., h = 1, 5, 22, 44, and 66 days.14 

With such graphical analysis, we can visually inspect the predictive performance of each model 

on different forecast horizons. These plots show that the CARR- CJ model beats the CARR model 

in forecasting the realized volatility across horizons. However, a closer look at the plots reveals 

something interesting. For the longer horizons, the curve has a plot that is always increasing and 

well-above zero, which means the CARR-CJ model consistently outperforms the CARR 

benchmark over the whole out-of-sample periods. In contrast to the shorter horizons, the curve 

decreases even below zero for some periods, which means the CARR-CJ model underperforms 

compared with the CARR model for some time. Figure 2 visually provides a very important 

message: a range model with separation of the continuous and jump components largely improves 

the forecasting power at longer horizons because of the frequent occurrence of jumps, which 

further confirms the forecast comparison results in Table 7. Similar performances are also seen for 

other equity indices; however, we do not present these graphs here. 

Overall, in-sample and out-of-sample evidence show that the CARR-CJ model outperforms 

the CARR model. The conclusion of this section is clear: separating dynamic structures for 

continuous and jump components of the price range yields a substantial improvement in volatility 

forecasting, especially at longer horizons, as we allow separate dynamic structures for the two 

components of asset prices to account for asymmetric behaviors in the financial market. To the 

best of our knowledge, this is a novel empirical finding that further confirms the importance of 

jumps in financial econometrics. 

                                                      
14 The CAFE and CSFE plots for other equity indices are available upon request. 
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4.3 Robustness Check 

This paper chooses the realized volatility as a measure of volatility; however, it is sometimes 

unavailable and is contaminated by market microstructure noise (Anderson et al., 2000). For 

robustness, we also compare CARR with CARR-CJ using the GK volatility estimator of Garman 

and Klass (1980) due to the data availability. Formally, the GK estimator is defined as follows: 

22 ])[12ln2(][5.0 O

t

C

t

L

t

H

tGK pppp   ,                                (29) 

where 
C

tp  and 
O

tp  stand for the close and open prices at time t, respectively. Garman and Klass 

(1980) reported that their estimator is 7.4 times more efficient than a simple close-to-close variance 

estimator. The efficiency gain can be intuitively attributed to the fact that an estimate also 

incorporates open and close data besides high and low prices. Hansen and Lunde (2006) suggested 

range-based estimators might be possible alternative proxies for true volatility, e.g., see Molnár 

(2016). 

Table 8 reports the RMSE, QLIKE, and DM statistics with respect to the GK estimator. The 

evidence is completely consistent with the results of Table 7. The RMSE and QLIKE statistics 

show the dominance of the CARR-CJ model over the CARR model. It is clear from the ratio 

statistics that the CARR-CJ model performs better at longer horizons. Consistent with the ratio 

statistics, the DM statistics are uniformly reported to be larger and more significant at longer 

horizons than that at shorter horizons. 

It is important to use different forecast schemes to examine robustness of forecasting ability 

and assess the model performance. Therefore, the recursive (expanding) window estimation 

method is used.15 Out-of-sample forecasting is also performed on the equity indices over different 

time horizons, and the results are reported in Table 9 for realized volatility forecasts. The format 

is the same as that of Table 8, including the rows that report the fraction of equity indices for which 

a given model is the best. From Table 9, it can be seen that the CARR-CJ model performs better 

than the CARR model and over longer horizons. 

In empirical studies, equity and stock-index volatilities display a significant asymmetric 

response to past returns; this so-called “leverage effect” was first noted by Black (1976). To avoid 

omitted variable bias and investigate the robustness of the forecasting performance, following 

Chen et al. (2013), we take into account leverage effects on the conditional range by performing 

the following models: 

1111 )0(   ttttt RrIR   ,                                       (30) 

 

                                                      
15  To be specific, the whole T data observations are divided into an in-sample portion composed of the first k 

observations and an out-of-sample portion composed of the last s observations. The initial h-step ahead out-of-

sample forecasts hkFV  is based on the first k observations. The sample is increased by one, the models are re-

estimated, and the next h-step ahead out-of-sample forecasts produced are based on the first k + 1 observations. 

This process continues until the out-of-sample covers all available data. The recursive predicting procedure 

simulates the situation of a forecaster in real time (Xie, 2019). 
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TABLE 8 

RMSE AND QLIKE STATISTICS OF THE OUT-OF-SAMPLE FORECASTS ON THE GK ESTIMATOR 

BY CARR AND CARR-CJ: ROLLING WINDOW APPROACH (ROBUSTNESS CHECK) 

 RMSE QLIKE 

 Horizon (days) Horizon (days) 

 1 5 22 44 66 1 5 22 44 66 

Panel A: AORD          

CARR 0.214 0.227 0.242 0.246 0.253 7.340 8.163 9.457 9.923 10.598 

CARR-CJ 0.213 0.226 0.240 0.244 0.251 7.287 8.112 9.345 9.755 10.391 

Ratio 0.995 0.993 0.993 0.991 0.990 0.993 0.994 0.988 0.983 0.980 

DM stat. −3.129*** −3.059*** −4.405*** −5.573*** −6.702*** −2.367** −1.373 −3.373*** −5.356*** −6.475*** 

Panel B: DJI          

CARR 0.273 0.315 0.348 0.364 0.376 8.775 11.524 14.982 16.612 18.028 

CARR-CJ 0.270 0.313 0.342 0.355 0.364 8.637 11.454 14.624 16.019 17.163 

Ratio 0.989 0.992 0.982 0.976 0.968 0.984 0.994 0.976 0.964 0.952 

DM stat. −2.168** −1.514 −3.161*** −4.360*** −6.699*** −2.360** −0.705 −3.285*** −4.094*** −5.654*** 

Panel C: HSI          

CARR 0.298 0.314 0.329 0.330 0.342 6.963 7.618 8.543 8.786 9.521 

CARR-CJ 0.298 0.314 0.328 0.328 0.338 6.945 7.606 8.498 8.652 9.335 

Ratio 0.998 0.998 0.995 0.992 0.989 0.997 0.998 0.995 0.985 0.981 

DM stat. −1.159 −1.065 −1.851* −3.839*** −5.523*** −0.871 −0.369 −1.109 −3.899*** −5.140*** 

Panel D: NK 225          

CARR 0.360 0.393 0.426 0.435 0.442 9.036 11.054 13.803 14.686 15.373 

CARR-CJ 0.359 0.390 0.423 0.431 0.437 9.008 10.984 13.586 14.351 14.976 

Ratio 0.997 0.994 0.993 0.991 0.989 0.997 0.994 0.984 0.977 0.974 

DM stat. −1.144 −1.937* −3.505*** −4.677*** −5.830*** −0.814 −1.245 −3.026*** −4.645*** −5.821*** 

Panel E: S&P 500          

CARR 0.261 0.306 0.341 0.357 0.371 9.107 11.945 15.389 17.114 18.592 

CARR-CJ 0.258 0.303 0.335 0.348 0.358 8.989 11.829 15.004 16.487 17.681 

Ratio 0.989 0.989 0.981 0.975 0.967 0.987 0.990 0.975 0.963 0.951 

DM stat. −2.488** −2.216** −3.425*** −4.911*** −7.798*** −2.436** −1.447 −3.780*** −4.810*** −6.841*** 

Model Fraction of times a model is the best 

CARR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

CARR-CJ 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

NOTE: This table computes the RMSE and QLIKE using the following equations: 
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where MVt and FVt (m) are the measure of volatility and the predictions reported by model m, respectively. All tests 

are out-of-sample and carried out using the rolling window approach. We only report cases with h =1, 5, 22, 44, and 

66 days. Smaller RMSE (QLIKE) means lower forecasting error. Bold entries and negative values of the DM test 

indicate that the CARR-CJ model beats the CARR model. The RMSE and QLIKE reported in this table have been 

multiplied by 100. The bottom rows report the list of models and the fraction of times a given model is best across the 

five equity indices for a given horizon. ***, **, and * represent 1%, 5%, and 10% levels of significance, respectively. 
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where rt is a daily log return in day t and the index function I(.) = 1 when the return rt is negative; 

otherwise, I(.) = 0. We denote Eq. (30) as the CARRX model and Eqs. (31) and (32) as the 

CARRX-CJ model. In the CARRX and CARRX-CJ models, good news is given by rt > 0, and bad 

news is given by rt < 0. Good news has an impact of  , 
C , and 

J , while bad news has an 

impact of   , 
CC   , and 

JJ   . If  , 
C , and 

J  are positive, bad news produces 

more volatility, an indication of leverage effect. 
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TABLE 9 

RMSE AND QLIKE STATISTICS OF THE OUT-OF-SAMPLE FORECASTS ON REALIZED 

VOLATILITY BY CARR AND CARR-CJ: EXPANDING WINDOW APPROACH (ROBUSTNESS 

CHECK) 

 RMSE QLIKE 

 Horizon (days) Horizon (days) 

 1 5 22 44 66 1 5 22 44 66 

Panel A: AORD          

CARR 0.201 0.221 0.238 0.239 0.244 4.845 5.887 7.015 7.183 7.568 

CARR-CJ 0.200 0.220 0.237 0.238 0.243 4.848 5.899 6.991 7.121 7.471 

Ratio 0.998 0.996 0.996 0.996 0.995 1.001 1.002 0.997 0.991 0.987 

DM stat. −1.062 −1.407 −1.673* −1.633 −2.348** 0.124 0.281 −0.636 −1.630 −2.473** 

Panel B: DJI          

CARR 0.293 0.347 0.398 0.420 0.438 6.086 9.017 13.105 15.076 16.803 

CARR-CJ 0.292 0.344 0.388 0.407 0.422 5.990 8.916 12.666 14.395 15.899 

Ratio 0.996 0.990 0.977 0.969 0.964 0.984 0.989 0.966 0.955 0.946 

DM stat. −0.530 −1.718* −5.246*** −6.842*** −9.323*** −1.320 −0.864 −5.307*** −6.992*** −9.255*** 

Panel C: HSI          

CARR 0.225 0.251 0.276 0.281 0.299 3.714 4.497 5.615 6.068 6.959 

CARR-CJ 0.222 0.247 0.271 0.274 0.291 3.588 4.371 5.449 5.813 6.646 

Ratio 0.984 0.984 0.982 0.977 0.974 0.966 0.972 0.970 0.958 0.955 

DM stat. −5.090*** −3.950*** −4.781*** −7.578*** −9.056*** −7.368*** −4.709*** −4.824*** −8.458*** −9.563*** 

Panel D: NK 225          

CARR 0.318 0.369 0.426 0.443 0.458 5.222 7.536 11.062 12.504 13.629 

CARR-CJ 0.316 0.364 0.419 0.434 0.447 5.159 7.388 10.696 11.956 12.992 

Ratio 0.993 0.987 0.984 0.980 0.977 0.988 0.980 0.967 0.956 0.953 

DM stat. −1.791* −2.955*** −5.721*** −7.750*** −9.464*** −2.063** −2.785*** −5.229*** −7.932*** −9.482*** 

Panel E: S&P 500          

CARR 0.265 0.325 0.377 0.402 0.424 6.081 9.318 13.486 15.742 17.749 

CARR-CJ 0.262 0.320 0.368 0.390 0.409 5.967 9.179 13.069 15.120 16.875 

Ratio 0.991 0.986 0.976 0.970 0.964 0.981 0.985 0.969 0.961 0.951 

DM stat. −1.561 −2.650*** −5.251*** −6.945*** −10.046*** −2.177** −1.698* −6.013*** −7.534*** −10.365*** 

Model Fraction of times a model is the best 

CARR 0% 0% 0% 0% 0% 20% 20% 0% 0% 0% 

CARR-CJ 100% 100% 100% 100% 100% 80% 80% 100% 100% 100% 

NOTE: This table computes the RMSE and QLIKE using the following equations: 
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where MVt and FVt (m) are the measure of volatility and the predictions reported by model m, respectively. All tests 

are out-of-sample and carried out using expanding window approach for a robustness check. We only report cases 

with h =1, 5, 22, 44, and 66 days. Smaller RMSE (QLIKE) means lower forecasting error. Bold entries and negative 

values of the DM test indicate that the CARR-CJ model beats the CARR model. The RMSE and QLIKE reported in 

this table have been multiplied by 100. The bottom rows report the list of models and the fraction of times a given 

model is best across the five equity indices for a given horizon. ***, **, and * represent 1%, 5%, and 10% levels of 

significance, respectively. 

In-sample results are reported in Table 10. As expected, all coefficients of leverage are 

positive and highly significant. A closer look at the magnitudes shows that the leverage effects are 

higher for the continuous component than for the jump component, which implies a heterogeneous 

structure of the leverage effect for these two range processes as well. Moreover, by comparing 

Table 4 and Table 10, the LLF show unambiguously that inclusion of the leverage effect improves 

the in-sample forecasting performance, except for the HSI index. On the other hand, reduction of 

Lung–Box Q statistic for the CARRX and CARRX-CJ models in most cases, compared with the 

CARR and CARR-CJ models, is remarkable. It is clear that a pure CARR or CARR-CJ model is  
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TABLE 10 

IN-SAMPLE ESTIMATION RESULTS OF THE CARRX AND CARRX-CJ MODELS 

 
410        Half-life LLF Q(12) 

Panel A: AORD       

CARRX 2.389(0.000) 0.074(0.000) 0.859(0.000) 0.084(0.000) 28.465 187.219 12.510(0.406) 

CARRX-C 2.285(0.000) 0.083(0.000) 0.850(0.000) 0.083(0.000) 27.858 
187.225 12.445(0.411) 

CARRX-J 0.325(0.000) 0.002(0.729) 0.960(0.000) 0.052(0.000) 58.526 

Panel B: DJI       

CARRX 3.057(0.000) 0.104(0.000) 0.809(0.000) 0.125(0.000) 29.213 174.696 18.997(0.089) 

CARRX-C 2.997(0.000) 0.131(0.000) 0.784(0.000) 0.113(0.000) 25.281 
174.708 19.179(0.084) 

CARRX-J 0.540(0.000) 0.019(0.012) 0.928(0.000) 0.089(0.000) 86.601 

Panel C: HSI       

CARRX 1.997(0.000) 0.088(0.000) 0.880(0.000) 0.033(0.000) 44.801 164.497 15.539(0.213) 

CARRX-C 2.013(0.000) 0.095(0.000) 0.872(0.000) 0.033(0.000) 41.572 
164.500 13.477(0.335) 

CARRX-J 0.393(0.000) 0.022(0.001) 0.954(0.000) 0.026(0.000) 64.780 

Panel D: NK 225       

CARRX 4.247(0.000) 0.142(0.000) 0.786(0.000) 0.079(0.000) 22.126 164.125 29.393(0.003) 

CARRX-C 3.835(0.000) 0.147(0.000) 0.783(0.000) 0.077(0.000) 22.511 
164.130 31.821(0.001) 

CARRX-J 0.575(0.000) 0.029(0.000) 0.938(0.000) 0.039(0.000) 53.173 

Panel E: S&P 500       

CARRX 2.999(0.000) 0.096(0.000) 0.814(0.000) 0.133(0.000) 29.838 174.320 24.092(0.020) 

CARRX-C 3.109(0.000) 0.116(0.000) 0.792(0.000) 0.126(0.000) 25.007 
174.336 22.997(0.028) 

CARRX-J 0.328(0.000) 0.018(0.011) 0.934(0.000) 0.088(0.000) 175.086 

NOTE: This table reports the estimation results of the CARRX and CARRX-CJ models with the leverage effect. The 

CARRX model 1111 )0(   ttttt RrIR  , where tR  is the range and tr  is the log return. The CARRX-

CJ model
1111 )0(   tt

CC

t

C

t

CCC

t CRrICR   and
1111 )0(   tt

JJ

t

J

t

JJJ

t JRrIJR   , where 

tCR  and tJR  are the continuous and jump parts of the range, respectively. Both CARR and CARR-CJ models are 

estimated using the QMLE method. LLF is the log-likelihood function and is multiplied by 10−2. Q(k) is the Ljung–

Box Q statistic for autocorrelation test with k lags. The numbers in parentheses are p-values for model coefficients 

and Q(k) statistic. 

insufficient and that exogenous variables are necessary to warrant a model to pass misspecification 

tests. Also, the estimation results consistently show that the jump component is quite persistent, 

with a volatility half-life of about 53 to 175 days, while it has a smaller short-run impact on future 

volatility than the continuous component.16 

4.4 Further Analysis 

Given that the CARR-CJ model is designed to capture the market dynamics of the continuous 

variation and jumps in volatility, it is unsurprising that it outperforms the standard CARR model. 

An even more interesting question is whether it can beat the existing jump volatility models. In 

this paper, we use the most popular HAR-CJ model of Andersen et al. (2007) as the benchmark 

jump model for forecasting return volatility. The specification of HAR-CJ is defined as follows: 

CJ

ttJMttJWttJDttCMttCWttCDtt tt
JJJCCCRV

1,,22,5,1,22,5,1-01, 
    ,  (33) 

where 1, ttRV  is the increment of RV from t to t + 1, ttC ,1- , ttC ,5 , and ttC ,22  are the averages 

of the lagged daily, weekly, and monthly continuous components, respectively, ttJ ,1- , ttJ ,5 , and 

ttJ ,22  are the averages of the lagged daily, weekly, and monthly jump components, respectively, 

and 
CJ

tt 1, 
  is an innovation term. The HAR-CJ model separates each of the RV components of the  

                                                      
16 The persistence parameter is measured by  5.0 . 
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TABLE 11 

RMSE AND QLIKE STATISTICS OF THE OUT-OF-SAMPLE FORECASTS ON REALIZED 

VOLATILITY BY CARRX AND CARRX-CJ: ROLLING WINDOW APPROACH (ROBUSTNESS 

CHECK) 

 RMSE QLIKE 

 Horizon (days) Horizon (days) 

 1 5 22 44 66 1 5 22 44 66 

Panel A: AORD          

CARRX 0.197 0.220 0.242 0.249 0.256 4.683 5.877 7.369 7.909 8.406 

CARRX-CJ 0.196 0.219 0.240 0.246 0.253 4.656 5.841 7.260 7.746 8.215 

Ratio 0.996 0.995 0.992 0.990 0.989 0.994 0.994 0.985 0.979 0.977 

DM stat. −1.786* −2.192** −3.617*** −4.677*** −5.596*** −1.355 −1.140 −3.155***** −4.617*** −5.265*** 

Panel B: DJI          

CARRX 0.282 0.350 0.403 0.428 0.445 5.767 9.229 13.811 16.076 17.489 

CARRX-CJ 0.279 0.344 0.390 0.411 0.425 5.567 8.969 13.082 15.008 16.208 

Ratio 0.988 0.981 0.968 0.962 0.955 0.965 0.972 0.947 0.934 0.927 

DM stat. −1.444 −3.459*** −5.597*** −7.164*** −9.937*** −3.547*** −2.688*** −5.540*** −7.069*** −8.772** 

Panel C: HSI          

CARRX 0.222 0.249 0.274 0.276 0.292 3.639 4.443 5.565 5.959 6.763 

CARRX-CJ 0.219 0.246 0.269 0.271 0.286 3.515 4.322 5.411 5.730 6.495 

Ratio 0.984 0.986 0.984 0.980 0.978 0.966 0.973 0.972 0.962 0.960 

DM stat. −5.933*** −4.132*** −4.502*** −7.444*** −8.749*** −7.681*** −4.852*** −4.796*** −8.153*** −8.960*** 

Panel D: NK 225          

CARRX 0.312 0.368 0.419 0.433 0.442 5.062 7.607 10.942 12.006 12.735 

CARRX-CJ 0.328 0.371 0.419 0.431 0.441 6.087 7.891 10.879 11.839 12.560 

Ratio 1.053 1.008 1.000 0.997 0.996 1.202 1.037 0.994 0.986 0.986 

DM stat. 5.691*** 1.034 −0.015 −0.571 −0.666 6.049*** 1.832* −0.409 −1.136 −1.334 

Panel E: S&P 500          

CARRX 0.254 0.328 0.389 0.417 0.442 5.811 9.518 14.444 17.012 18.951 

CARRX-CJ 0.250 0.321 0.374 0.398 0.417 5.607 9.254 13.650 15.819 17.448 

Ratio 0.984 0.978 0.963 0.955 0.945 0.965 0.972 0.945 0.930 0.921 

DM stat. −2.369** −3.915*** −6.018*** −7.790*** −11.382*** −4.307*** −3.107*** −7.080*** −8.296*** −10.342*** 

Model Fraction of times a model is the best 

CARRX 20% 20% 0% 0% 0% 20% 20% 0% 0% 0% 

CARRX-CJ 80% 80% 100% 100% 100% 80% 80% 100% 100% 100% 

NOTE: This table computes the RMSE and QLIKE using the following equations: 
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where MVt and FVt (m) are the measure of volatility and the predictions reported by model m, respectively. All tests 

are out-of-sample and carried out using the rolling window approach. We only report cases with h =1, 5, 22, 44, and 

66 days. Smaller RMSE (QLIKE) means lower forecasting error. Bold entries and negative values of the DM test 

indicate that the CARRX-CJ model beats the CARRX model. The RMSE and QLIKE reported in this table have been 

multiplied by 100. The bottom rows report the list of models and the fraction of times a given model is best across the 

five equity indices for a given horizon. ***, **, and * represent 1%, 5%, and 10% levels of significance, respectively. 

HAR framework of Corsi (2009) into its continuous and discontinuous (jump) parts. The empirical 

results in Corsi et al. (2010) suggested that the separation strategy introduced by this model 

significantly improved the out-of-sample forecasting. 

Table 12 presents the summary statistics for the one-step-ahead out-of-sample forecast 

evaluations.17 It is clear that the CARR-CJ model exhibits superior forecasting performance for 

five equity markets, since it reports lower RMSE and lower QLIKE. The DM statistics are negative  

                                                      
17 Note, however, that we are not able to produce multi-step forecasts. To do so, we need to feed the continuous and 

jump forecasts from each successive step back into the HAR-CJ model to generate the next step, but, in fact, that 

strictly could not be achieved unless we set up two different volatility models to capture their dynamic movements. 
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TABLE 12 

RMSE AND QLIKE STATISTICS OF THE OUT-OF-SAMPLE FORECASTS ON REALIZED 

VOLATILITY BY THE HAR-CJ AND CARR-CJ MODELS 

 Rolling window Expanding window 

 RMSE QLIKE RMSE QLIKE 

Panel A: AORD     

HAR-CJ 0.208 5.184 0.208 5.175 

CARR-CJ 0.200 4.815 0.200 4.848 

Ratio 0.959 0.929 0.961 0.937 

DM stat. −3.312*** −3.559*** −2.873*** −2.892*** 

Panel B: DJI     

HAR-CJ 0.317 8.284 0.317 8.284 

CARR-CJ 0.290 5.960 0.292 5.990 

Ratio 0.914 0.720 0.919 0.723 

DM stat. −5.557*** −9.432*** −4.664*** −8.772*** 

Panel C: HSI     

HAR-CJ 0.229 3.798 0.229 3.798 

CARR-CJ 0.220 3.529 0.222 3.588 

Ratio 0.959 0.929 0.971 0.945 

DM stat. −1.672* −2.729*** −1.263 −2.161** 

Panel D: NK 225     

HAR-CJ 0.336 5.997 0.335 6.089 

CARR-CJ 0.315 5.133 0.316 5.159 

Ratio 0.935 0.856 0.943 0.847 

DM stat. −2.974*** −5.539*** −2.878*** −5.678*** 

Panel E: S&P 500     

HAR-CJ 0.286 8.273 0.283 7.757 

CARR-CJ 0.261 5.991 0.262 5.967 

Ratio 0.912 0.724 0.925 0.769 

DM stat. −4.095*** −3.912*** −3.201*** −6.047*** 

NOTE: This table computes the RMSE and QLIKE using the following equations: 
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where MVt and FVt (m) are the measure of volatility and the predictions reported by model m, respectively. All tests 

are one-step-ahead out-of-sample and carried out using the rolling window and expanding window approaches. 

Smaller RMSE (QLIKE) means lower forecasting error. Bold entries and negative values of the DM test indicate that 

the CARR-CJ model beats the HAR-CJ model. The RMSE and QLIKE reported in this table have been multiplied by 

100. ***, **, and * represent 1%, 5%, and 10% levels of significance, respectively. 

and significant in most cases, which means that the dominance of the CARR-CJ model over the 

HAR-CJ model is statistically significant. It is found that the range-based model with a non-linear 

structure has better forecasting accuracy than the HAR realized volatility linear model. Therefore, 

the predictive ability of the extension model in this paper is very encouraging. 

Turning to the out-of-sample evidence, Table 11 reports the out-of-sample forecasting 

performance for realized volatility, carried out by the rolling window method. The superiority of 

the CARRX-CJ model with the leverage effect is also confirmed in most cases, especially at longer 

horizons. The above robustness tests show that our findings are quite robust and largely benefit 

from the separation of the price range into its continuous and discontinuous (jump) components. 
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5. CONCLUSIONS 

In this paper, we construct a novel range-based model with jumps that extends the CARR 

model by decomposing the price range into its continuous and jump components. Based on the 

framework of the CARR model, we are able to directly investigate the dynamics of the volatility 

shocks in nature, i.e., the short-run impact and volatility persistence. To the best of our knowledge, 

the present study is the first to incorporate jumps in a low-frequency data based price range 

modeling and forecasting under the CARR specification instead of the HAR-type models. Our 

empirical results, obtained on the international equity markets, show that the jump component has 

longer volatility half-life and smaller short-run impact on future volatility compared to the 

continuous component, an indication that the dynamics for the two parts of the range differ greatly. 

On the other hand, the CARR-CJ model we propose provides a superior in-sample fit and out-of-

sample forecasting performance to the CARR benchmark as well as the HAR-CJ model of realized 

volatility, especially at longer forecast horizons. Moreover, our study’s results are quite robust to 

employ other volatility measures and forecast evaluation methods, as well as include well-known 

exogenous variables, such as the leverage effect, into the CARR-CJ model. 

These findings contribute to the extant literature in several ways. First, the existing studies 

exploring the role of jumps in price are mostly grounded upon realized return-based volatility and 

HAR framework. Hence, our paper attempts to model and forecast price range with jumps in the 

framework of the CARR model, which should enrich the related research on volatility jumps. 

Second, our study demonstrates that by slightly modifying the CARR model to allow and control 

for jumps, the resulting CARR-CJ model outperforms the most popular HAR-CJ model of realized 

volatility, owing to our model’s greater flexibility in capturing the dynamic evolution of volatilities, 

such as time-varying volatility and volatility clustering. Third, as pointed out by Chou (2005), our 

model is very simple to implement, as the estimation of the model parameters can be performed 

through estimating a well-known GARCH model. Finally, the aggregate daily realized measures 

data used to split a range into two parts is free and publicly available; thus, access to the high-

frequency intraday data from which these realized measures were not required. We think that, for 

all the aforementioned contributions, the extension model may be effectively used for risk 

management and asset pricing. 
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